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a b s t r a c t

In this note, a novel Kalman filter is developed in the Bayesian framework for linear dynamical systems
whose outputs are measured by faulty sensors and transmitted to the filter through a lossy delaying
channel. The main novelty of the proposed method is to modify the likelihood function of the common
Kalman filter to copewith incomplete, delayed and lostmeasurements. The suggestedmodified likelihood
filter can be interpreted as an adaptive Kalman filter, wherein weighting factors are tuned based on
the characteristics of the received measurements. Estimation accuracy is assured provided that some
conditions on the properties of the sensor and the channel are met. Simulation results are presented
to demonstrate the superior performance of the introduced filter compared to some rival ones in the
literature.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Inferring the value of states of dynamical systems from uncer-
tain measurements is called state estimation which is needed in
the implementation of feedback control,monitoring and fault diag-
nosis [1,2]. Kalman filter (KF) as a standard tool for state estimation
utilizes recent measurements to achieve a newer estimation. The
primary assumption in the conventional KF is that the measure-
ments are immediately accessible at every time instant; however,
in many real-world applications such as networked control sys-
tems and target tracking via sensor networks, they are acquired by
faulty sensors and exposed to random delays and dropouts [3,4].

Based on various models of data latency and dropout, a lot of
filtering schemes have been proposed to enhance the estimation
accuracy [5]. Concepts of state augmentation and reorganization
of observations were employed in the literature to handle delays
and dropouts in the design of KF [6]. In [7], an augmented state
KF (ASKF) was proposed to solve the out of sequence measure-
ments (OOSMs) problem in the Bayesian framework. In [8], a
filtering scheme was proposed considering random delays, data
dropouts and missing measurements. Different augmented sub-
models were defined corresponding to the each situation of the
received observations. In [9], an optimal filter dependent on the
probabilities of the channel was presented in the minimum vari-
ance sense to cope with random measurement delays and losses.
In [10], an optimal minimum variance estimator, dependent on
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packet arriving rate was proposed for systems with finite step
correlated noises and packet dropout. In [11], a minimum variance
filter was designed based on measurements reorganization idea,
considering delays and dropouts of observations. In [12], using
projection theorem, an optimal filter was designed for the case
that the filter may receive one or multiple measurements at a
time or nothing at all. In [13], a new optimal filter was derived
based on projection method for linear systems subject to missing
measurements with known probabilities.

In this paper, a novel KF is designed in the Bayesian framework
for linear discrete-time systems whose outputs are measured by
faulty sensors and transmitted via a delaying lossy medium. The
key idea of the paper is to modify the likelihood function of the
Bayesian filteringmethod to cope with sensor and communication
imperfections. First, the system dynamics is reformulated as an
augmented state space model; then, the likelihood function is
calculated based on the possible incomingmeasurements to obtain
the recursive equations of the modified likelihood KF (MLKF).
The proposed filter which is based on state augmentation notion,
like [9] and [8], can be interpreted as a KF with adaptive gains,
wherein weighting factors are adjusted based on statistical char-
acteristics of the measurements. Compared to [9] and [8], MLKF
has simple structure which leads to low computational burden
with better estimation accuracy; moreover, implementation of the
suggested filter does not require the exact model of the underlying
communication channel. It is worth noting that in general, the
filtering performance may fail, because of approximation made in
deriving the filter equations. So, conditions on the properties of
sensor and the channel are imposed to guarantee the estimation
accuracy.
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Fig. 1. Schematic diagram of the considered filtering scheme.

The remainder of this paper is organized as follows. Section 2
introduces the models of system andmeasurements and describes
the Bayesian approach to KF design problem. Section 3, presents
main results of the paper wherein MLKF relations are derived. In
Section 4, the advantages of the suggested MLKF are illustrated.
Section 5 concludes the paper.

2. Problem statement and preliminaries

Consider the discrete-time linear stochastic system

xk = Ak−1 xk−1 + Bk−1 ωk−1, (1)
zk = Ck xk + Dk υk, (2)

where xk ∈ Rn is the state vector with initial condition x0 that has
a Gaussian distribution, zk ∈ Rm is the ideal output, ωk ∈ Rr and
υk ∈ Rp are process and measurement noises which are supposed
to be white Gaussian with zero mean and covariances Qk > 0
and Rk > 0, respectively. Ak, Bk, Ck and Dk are known matrices
with appropriate dimensions. It is assumed that the matrix Dk has
full row rank; also, x0 and noises are uncorrelated. In practice,
because of sensor aging and temporal failure, the measurement
information might be degraded or missed randomly [4]. So, the
filter receives real measurements, (3) instead of the ideal ones, (2)

z ′

k = θk Ck xk + Dk υk, (3)

where the random variable θk = diag{α1
k , α2

k , . . . , αm
k } describes

the faults in the structure of sensors. Independent variables αi
k (i =

1, 2, . . . ,m) with the PDF ρ i
k(s) (i = 1, 2, . . . ,m) on the interval

[0, 1], are independent of all other noises. It is assumed that the
expectation value, θ̄ = E[θk] is available as [4]. As shown in Fig. 1,
sensor outputs (3) are transmitted through a communication chan-
nel to a filter implemented in a processing center. The possible
incomes of the filter are formulated as (4)

yk = φ, or yk = Dl υl, or

yk = z
′

k−i, i = 0, 1, . . . , d, (4)

where yk = φ means that the filter receives nothing (data dropout
at time k); i is the delay value with maximum d and yk = Dl υl
stands for missing measurement, where the filter only receives
noise (θk = 0). Note that l represents the time that the measure-
ment is missed. In other cases, possibly degraded measurements
are received with/without delay (θk ̸= 0). So, yk depends on
the channel and sensor characteristics. The estimator does not
have any information about the exact value of delay, missing and
dropout, but only their probabilities.

The aim of this paper is to design a filter in the Bayesian
framework to accurately estimate xk given yk (all of the received
measurements up to time k) without the need to exact math-
ematical model of the communication link, in contrary to [12].
Before proceeding, the basics of the derivation of KF from the
Bayesian viewpoint is briefly recalled from [2]. In the case of ideal
measurements, i.e., for systems described by (1) and (2), the filter
is designed based on the Bayesian relation

p
(
xk|zk

)
=

p
(
zk|xk

)
p
(
zk|zk−1

) p
(
xk|zk−1), (5)

wherein zk symbolizes all the measurements up to and includ-
ing time k and p

(
xk|zk

)
is the posterior PDF of state xk given zk,

p
(
zk|xk

)
is the measurement likelihood function, p

(
xk|zk−1

)
shows

the prediction PDF and p
(
zk|zk−1

)
stands for the normalization

factor. By assuming a Gaussian density for the prior PDF of states,
namely p

(
xk−1|zk−1

)
, KF relations are extracted from (5) by some

straightforward manipulations.
However, in the considered problem, incomplete, delayed and

lost measurements, yk are received by the filter instead of zk; so,
(5) is not usable now. As the relation between yk and xk is not in
the form of (2), the calculation of the posterior PDF of xk given
uncertain measurements up to time k, i.e. yk is challenging. The
complete information of the states of the dynamical system (1)
can be described by the joint PDF p

(
xk

)
= p

(
xk, xk−1, . . . , x0

)
.

When the relationship between yk and xk is known and p
(
xk

)
is

available, the Bayes theory is used to update the knowledge about
these states [2] as the following

p
(
xk|yk

)
=

p
(
yk|xk

)
p
(
xk

)
p
(
yk

) . (6)

The posterior PDF, p
(
xk|yk

)
represents the updated version of the

prior knowledge p
(
xk

)
using the newly available information in the

likelihood function, p
(
yk|xk

)
; while, p

(
yk

)
is a normalization factor.

When themeasurements are received sequentially over time, they
are used as soon as possible to update the PDF of the states. To do
this, (6) is rewritten in a recursive form

p
(
xk|yk

)
=

p
(
yk, yk−1

|xk
)
p
(
xk, xk−1

)
p
(
yk, yk−1

) . (7)

According to the causality principle and the Markov property, (7)
can be simplified as

p
(
xk|yk

)
=

p
(
yk|xk, xk−1, . . . , xk−d

)
p
(
xk|xk−1

)
p
(
yk|yk−1

)
× p

(
xk−1

|yk−1). (8)

Now, (8) is marginalized to determine the posterior PDF of xk as
follows

p
(
xk|yk

)
=

1
p
(
yk|yk−1

) ∫
xk−d

· · ·

∫
xk−1

p
(
xk|xk−1

)
× p

(
yk|xk, xk−1, . . . , xk−d

)
× p

(
xk−1, xk−2, . . . , xk−d|yk−1)

× dxk−1 · · · dxk−d (9)

However, exact calculation of (9) and consequently, designing the
filter is intractable. In the next section, the proposed solution to
this dilemma is explained.

3. Design of MLKF

The first step to develop the proposed filter is to define the
augmented system

Xk = Āk−1 Xk−1 + B̄k−1 ωk−1, (10)

where Xk =
[
xTk , xTk−1, . . . , xTk−d

]T and

Āk =

⎡⎢⎢⎢⎢⎣
Ak 0 0 · · · 0
I 0 0 · · · 0
0 I 0 · · · 0
...

. . .
. . .

. . .
...

0 0 0 I 0

⎤⎥⎥⎥⎥⎦ , B̄k =

⎡⎢⎢⎢⎢⎣
Bk
0
0
...

0

⎤⎥⎥⎥⎥⎦ .
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