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This paper addresses the problem of controlling a Markov chain so as to minimize the long-run expected
average cost per unit time when the invariant distribution is unknown but we know it belongs to a
given uncertain set. The mathematical model used to describe this set is the total variation distance
uncertainty. We show that the equilibrium control policy, which yields higher probability to the states

with low cost and lower probability to the states with the high cost, is an optimal control policy that
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minimizes the average cost. Recognition of such a policy may be of value in practical situations with
constraints consistent to those studied here when the invariant distribution is uncertain and deriving
online an optimal control policy is required.
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1. Introduction

The average cost criterion is prominent as being complex to
analyze compared to other optimization criteria. While many
classical criteria lead to rational complete solutions, the long-run
cost may not. The average cost criterion for Markov Chains (MC)
with finite state and arbitrary action spaces has been extensively
reported in the literature (see, e.g., [1-4] and references therein).
A significant amount of research has been also reported for the
problem with finite state and action spaces [5-10]. Bather [11]
reviewed various techniques for a controlled MC with a finite
state space when there is a finite set of possible transition matri-
ces; an example illustrated the unpredictable behavior of policy
sequences derived by backward induction. He proposed a new
approach based on the idea of classifying the states according to
their accessibility from one another. Feinberg [12] considered four
average reward criteria on discrete time Markov decision model
with a finite state space, and proved the existence of persistently
nearly optimal strategies in various classes of strategies for models
with complete state information.

Research efforts have focused on infinite horizon, discrete-time
Markov Decision Processes (MDPs) with more general state and
action spaces. Hordjik [ 13] extended some earlier results to count-
able state and action spaces by introducing the Lyapunov function
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method for controlled Markov processes. Based on this method, a
solution to the average cost problem can be achieved yielding an
optimal control policy. Borkar [ 14-18] presented a convex analytic
approach to address this problem in a general framework with
unbounded cost by treating the control problem as a constrained
optimization problem on a suitably defined closed convex set of
ergodic occupation measures. In this work, necessary and sufficient
conditions for the existence of an optimal stable stationary de-
terministic policy were established; moreover, Borkar provided
conditions for optimality in terms of dynamic programming when
an optimal stable stationary policy is known to exist. Sennott [19]
introduced conditions that guarantee an optimal control policy in
problems with possibly unbounded, non-negative costs. Cavazos-
Cadena [20] considered denumerable state spaces and stationary
control policies that induce an ergodic chain; the value iteration
scheme was utilized to construct convergent approximations of
a solution to the optimality equation as well as a sequence of
stationary policies whose limit points are optimal. Leizarowitz
and Zaslavski [21] recently addressed the problem of uniqueness
and stability of optimal control policies when a complete set of
unicost MDPs is endowed. The problem of minimizing the long-run
expected average cost of a complex system consisting of interactive
subsystems was addressed in [22]. The problem of minimizing
the average cost in a controlled MC by solving a dual constrained
optimization problem was addressed in [23]. It was shown that the
control policy that yields higher probability to the states with low
cost and lower probability to the states with the high cost is an
optimal solution and it is defined as an Equilibrium Control Policy
(ECP).
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In this paper, we address the problem of controlling a MC
so as to minimize the long-run expected average cost per unit
time when the invariant distribution is unknown but we know it
belongs to the Total Variation (TV) distance uncertainty set. We
treat the stochastic optimal control problem as a dual constrained
optimization problem and we show that the ECP is an optimal
control policy that minimizes the average cost. Furthermore, we
show that this solution is optimal for the original stochastic control
problem without considering uncertainty.

This problem has become increasingly important in automo-
tive related applications [24-27]. In particular, in hybrid electric
vehicles (HEVs) implementing online an optimal control policy
to distribute the power demanded by the driver optimally to the
subsystems, e.g., the internal combustion engine, motor, generator,
and battery, constitutes a challenging control problem and has
been the object of intense study for the last two decades [28].
In this problem, we select the long-run, expected average cost
per unit time criterion as we wish to optimize HEV efficiency
(minimize losses) for any different driver and commute on average.
However, since the driver’s driving style is unknown, the invariant
distribution is not known a priori but we know that it belongs to
an uncertain set.

The remainder of the paper proceeds as follows: In Section 2,
we introduce our notation and formulate the problem. In Section 3,
we introduce the uncertainty set based on TV distance. In Section 4,
we formulate the stochastic control problem and provide a solution
that yields the ECP. Finally, we present an illustrative application
in Section 5, and we draw concluding remarks in Section 6.

2. Problem formulation

We consider a system that evolves according to a controlled
Markov process with a finite alphabet state space S of finite car-
dinality |S| = N, and a finite alphabet control space ¢/ of finite car-
dinality |¢/|, from which control actions are chosen. The evolution
of the state occurs at each of a sequence of stagest = 0,1, ...,
and it is portrayed by the sequence of the random variables X;
and U; corresponding to the system’s state and control action. In
our formulation, a state-dependent constraint is incorporated; that
is, for each realization of the state X, = i € S, we are given a
nonempty subset C(i) C ¢ of the control space, and the feasible
set of state-action pairs, I' := {(i,u)li € Sandu € c(i)}. For
each realization of the state X; = i € S, we define the function
¢; : S — U that maps the state space to the control space
defined as the control law. Each sequence  of the functions ¢;,
m = {$1, ..., Ps}, is defined as a stationary control policy of the
system. Furthermore we consider a function!: I — R, called the
cost function (cost-per-stage).

At each stage, the controller observes the system’s state X; =
i € S, and an action, U; = ¢; = u, is realized from the feasible
set of actions C(i) at this state. At the next stage t, the system
transits to the state X, = j € S imposed by the conditional
probability P(X,1 = j|X¢ = i, Uy = u), and a cost I(X;, U;) = I(i, u)
is incurred. After the transition to the next state has occurred, a
new action is selected, and the process is repeated. The completed
period of time over which the system is observed is called the
decision-making horizon and is denoted by T. The horizon can be
either finite or infinite; in this paper, we consider infinite-horizon
decision-making problems.

2.1. Long-run expected average cost subject to a distance uncertainty
We consider the long-run expected average cost per unit time.

The average cost criterion is considered usually for developing
the power management control in HEVs or plug-in HEVs (PHEVs),

where we seek to derive an optimal control policy that will op-
timize the efficiency of the HEV/PHEV in the long-term and not
necessarily for a specific period of time [29,30]. The assumption of
an infinite number of stages is never satisfied in practice. However,
itis a reasonable approximation for problems involving a finite but
very large number of stages.

Problem Statement PO. The minimum average cost corresponding
to the optimal control policy 7* is

*(r*) = min i 444475[ X, ] 1
J¥(r*) = min lim }Z:l 0 Ut (1)

To guarantee that the llmlt in (1) exists, we impose the follow-
ing assumption.

Assumption 2.1. For each stationary control policy 7 = {¢1, ¢2,
., s}, the MC {X¢|t = 1, 2, ...} has a single ergodic class.

Namely, for each stationary policy = € II, there is a unique
invariant distribution (row vector)

() = L), ua(m), ..., s ()],

such that w() = () P(r), with )", spi(r) = 1, where P(i) is
the transition probability matrix. A proof of this assertion may be
found in [[31], p. 227]. Under Assumption 2.1, it is known [[32], p.
175] that

where 1 = [1,1,...,1]" is the column vector whose elements
are all unity. Substituting (2) into (1) shows that long run average
expected average cost per unit time, J(;r ), does not depend on the
initial state and is given by

J(7) = () - 1), (3)

where [(7) = [I(1, ¢1), (2, ¢2), ..., (i, §i), ..., [(S, ¢ys))]" is the
column vector of the cost function. Consequently, a stationary
control policy is optimal if

I =J(x") = inf{J(m)lw € 1T}, (4)

where IT is the set of the feasible control policies. To simplify
notation, if the context makes it clear we do not emphasize the
dependence of the average cost J(r), invariant distribution (),
and cost function [(7r) on the control policy 7, and we denote them
simply by J, i, and L

=1 (), (2)

Problem Statement P1. Our objective is to derive the optimal con-
trol policy that minimizes the long-run, expected average cost per
unit time in (3), when the invariant distribution, w(s ), is unknown
but it belongs to an uncertain set, described by the TV distance ball.

The mathematical model used to describe the uncertainty set is
the TV distance developed in earlier work [33,34]. The problem of
deriving an optimal control policy that minimizes the average cost
can be reformulated as a dual constrained optimization problem.
More specifically, we can formulate a problem to derive a control
policy that minimizes the cost at each state with maximum prob-
ability, or alternatively, maximizes the probability of the states
incurring minimum cost. The average cost in (3) is a linear func-
tional on the Banach space of all bounded, continuous, real-valued
functions. The existence of a family of probability measures which
attain the supremum of the average cost in the general case has
been discussed in [35]. The uncertainty set based on TV distance is
weak*-compact and the functional weak* continuous [35]. Hence,
there exist a probability measure in this set that maximizes the
functional]. Since the set I" is compact there exists a cost-per-stage
that minimizes the functional J. The following section provides the
solution of the above optimization problem.
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