Accepted Manuscript

Dissipative light bullets: From stationary light bullets to double, quadruple, sixfold, eightfold and tenfold bullet complexes

Martin Djoko, T.C. Kofane

PII:
DOI:
Reference:

To appear in:
Received date: 25 December 2016
Revised date: $\quad 30$ June 2018
Accepted date: 20 August 2018

Please cite this article as: Martin Djoko, T.C. Kofane, Dissipative light bullets: From stationary light bullets to double, quadruple, sixfold, eightfold and tenfold bullet complexes, Communications in Nonlinear Science and Numerical Simulation (2018), doi: https://doi.org/10.1016/j.cnsns.2018.08.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Highlights

- Stabilization of the higher-order (3+1)D cubic-quintic-septic complex Ginzburg-Landau [(3+1)D CQS-CQL] equation is investigated in this work using variational analysis, numerical stimulation and Lyapunovs method.
- The set of evolution equations and the expression for the effective potential function have been derived.
- The fixed points are investigated by the means of Lyapunovs method and a potential well has been generated into the corresponding fixed point.
- New types of stable and robust dissipative light bullet complexes such as double, quadruple, sixfold, eightfold and tenfold bounded bullet complexes are obtained.

https://daneshyari.com/en/article/10127585

Download Persian Version
https://daneshyari.com/article/10127585

Daneshyari.com

