
Economics Letters 172 (2018) 123–126

Contents lists available at ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

Threshold regression asymptotics: From the compound Poisson
process to two-sided Brownian motion
Ping Yu a,∗, Peter C.B. Phillips b,c,d,e,1

a The University of Hong Kong, Hong Kong
b Yale University, USA
c University of Auckland, New Zealand
d University of Southampton, United Kingdom
e Singapore Management University, Singapore

h i g h l i g h t s

• We show asymptotic equivalence between joint asymptotics and sequential asymptotics in threshold regression.
• We show how compound Poisson process can be approximated by two-sided Brownian motion.
• We show randomness in the number of summands of compound Poisson process disappears in approximation.
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a b s t r a c t

The asymptotic distribution of the least squares estimator in threshold regression is expressed in terms of
a compound Poisson process when the threshold effect is fixed and as a functional of two-sided Brownian
motion when the threshold effect shrinks to zero. This paper explains the relationship between this dual
limit theory by showing how the asymptotic forms are linked in terms of joint and sequential limits. In
one case, joint asymptotics apply when both the sample size diverges and the threshold effect shrinks to
zero, whereas sequential asymptotics operate in the other case inwhich the sample size diverges first and
the threshold effect shrinks subsequently. The two operations lead to the same limit distribution, thereby
linking the two different cases. The proofs make use of ideas involving limit theory for sums of a random
number of summands.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Threshold regression (TR) is an important statistical model that
has been influential in many fields. There are extensive applica-
tions in economics and Hansen (2011) provides a summary of the
empirical literature. The typical setup has the following form

y =

{
x′β1 + u1, q ≤ γ ;

x′β2 + u2, q > γ ;
(1)
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where uℓ satisfies E [uℓ|x, q] = 0 and may be conditionally het-
eroskedastic over the two regimes ℓ = 1,2,2 the variable q governs
the threshold trigger γ that splits the sample and qhas density fq (·)
and distribution Fq (·), the regressor x ∈ Rk may include q as a co-
variate, and β := (β ′

1, β
′

2)
′
∈ R2k is the coefficient vector covering

the two regimes. The setup is similar to simple linear regression
except that the slope coefficients depend onwhether the threshold
variable q crosses the threshold point γ . The parameter γ is often
of primary interest in applications.

Under the conditional mean independence assumption E
[
uℓ|x,

q
]

= 0, the threshold parameter γ can be estimated by nonlinear

2 The symbol ℓ is used to indicate the two regimes in (1) and, to simplify notation
in what follows, the explicit values ‘‘ℓ = 1,2’’ are often omitted.
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least squares regression giving the least squares estimator (LSE)

γ̂ = argmin
γ∈Γ

Mn (γ ) ,

where Γ is the parameter space of γ , which is assumed to be a
proper subset of the support of q, the criterion function is

Mn (γ ) := min
β1,β2

n∑
i=1

(
yi − x′

iβ11(qi ≤ γ ) − x′

iβ21(qi > γ )
)2 ,

and 1(·) is the indicator function. Optimization of Mn (γ ) typi-
cally leads to an interval estimate of γ . Common practice in the
literature on threshold regression employs the left-endpoint LSE
(LLSE) to resolve this uncertainty, although Yu (2012, 2015) has
recently shown that the middle-point LSE (MLSE) is more efficient
in most cases. The precise definition of the argminγ operation or
the particular choice (LLSE orMLSE) of practical implementation of
the regression estimator γ̂ do not affect any of the results in this
paper.

Two approaches have been proposed for inference about γ in
the TR model (1). The first is the fixed-threshold-effect framework
of Chan (1993)where the break differential δ0 := β10−β20 is taken
as fixed andwherewe use the zero subscript to indicate true value.
In this framework, γ̂ is n-consistent, and

n (γ̂ − γ0)
d

−→ argmin
v

D (v) , (2)

where

D (v) =

{ ∑N1(|v|)
i=1 z1i, if v ≤ 0,∑N2(v)
i=1 z2i, if v > 0,

(3)

zℓi has an absolutely continuous distribution, Nℓ (·) is a Poisson
process with intensity fq(γ0), and {z1i, z2i}i≥1, N1(·) and N2(·) are
independent of each other. Define the variables

z1i : = 2x′

iδ0u1i + δ′

0xix
′

iδ0,

z2i : = −2x′

iδ0u2i + δ′

0xix
′

iδ0,

where z1i represents the effect onMn (γ ) −Mn (γ0) when γ is dis-
placed on the left of γ0, and z2i represents the converse case. Then
z1i = lim∆↑0 z1i1 {γ0 + ∆ < qi ≤ γ0} is the limiting conditional
value of z1i given γ0 + ∆ < qi ≤ γ0, ∆ < 0 with ∆ ↑ 0, and z2i =

lim∆↓0 z2i1 {γ0 < qi ≤ γ0 + ∆} is the limiting conditional value of
z2i given γ0 < qi ≤ γ0 + ∆, ∆ > 0 with ∆ ↓ 0. It follows that
the density of the quantity zℓi is fzℓ,q(zℓ, γ0)/fq(γ0), the conditional
density of zℓ given q = γ0. In this framework, the asymptotic
distribution of γ̂ is given as the argmin of the compound Poisson
process D (v) in (3).

The second approach is the shrinking-threshold-effect frame-
work of Hansen (2000) which is borrowed from the structural
change literature such as Picard (1985) and Bai (1997), where the
break differential δ0 shrinks to zero as n → ∞ and is therefore
denoted by δn. As long as ∥δn∥ → 0 and

√
n ∥δn∥ → ∞ (i.e., δn does

not fall in a contiguous neighborhood of the unidentified case δn =

0, or in other words, there is sufficient identification information
asymptotically in the sample data), then γ̂ is consistent with the
convergence rate an := n ∥δn∥

2, and

an (γ̂ − γ0)
d

−→ argmin
v

C (v) , (4)

where

C(v) =

{
2
√
fq(γ0)Ω1W1(|v|) + fq(γ0)Q |v| , if v ≤ 0,

2
√
fq(γ0)Ω2W2(|v|) + fq(γ0)Q |v| , if v > 0,

(5)

withQ = limn→∞

δ′
nE[xx′|q=γ0]δn

δ′
nδn

,Ωℓ = limn→∞

δ′
nE

[
xxu2

ℓ
|q=γ0

]
δn

δ′
nδn

, and
the pair {Wℓ(v), ℓ = 1, 2} being two independent standard Brow-
nianmotions defined on [0, ∞). In this framework, the asymptotic

distribution of γ̂ is given as the argmin of the drifted two-sided
Brownianmotion C(v) in (5) with different scale parameters in the
two directions.

An interesting question that emerges from these two different
asymptotic distributions of γ̂ is how they are related, given that
they both arise from the same statistical problem. In particular,
why and how does the argmin of a compound Poisson process
transition to the argmin of a two-sided Brownian motion as the
parameter δ0 changes from being treated as ‘fixed’ to one that
‘shrinks to zero’. The goal of the present paper is to provide the
connection between the two limit theories.

2. Two asymptotic distributions and their connection

This section provides some background on the two different
limit forms D(·) and C(·) and some intuition on how they deter-
mine the asymptotic distributions of γ̂ and influence the different
convergence rates. From Yu (2014), we have the finite sample
formulation

n (γ̂ − γ0) = argmin
v

Dn (v) + op(1), (6)

where

Dn (v) =

n∑
i=1

z1i1
(
γ0 +

v

n
< qi ≤ γ0

)
+

n∑
i=1

z2i1
(
γ0 < qi ≤ γ0 +

v

n

)
.

From Hansen (2000), we have the alternate formulation

an (γ̂ − γ0) = argmin
v

Cn (v) + op(1), (7)

where

Cn (v) =

n∑
i=1

z1i1
(

γ0 +
v

n ∥δn∥
2 < qi ≤ γ0

)

+

n∑
i=1

z2i1
(

γ0 < qi ≤ γ0 +
v

n ∥δn∥
2

)
.

Note from these criteria that in estimating γ , we may effectively
assume that the parameter vector β is known. The reason is that
estimation of γ involves only local information around the thresh-
old value γ0 while estimation of β involves global information and
these two components of the information set are independent —
see Yu (2012, 2015).

The difference between the criteria Dn (·) and Cn (·) is that the
localizing parameter v inDn (·) is standardized to v/∥δn∥

2 in Cn (·) ,

taking account of the shrinking differential δn. As a result, we
may write (7) as argmin Cn (v) = ∥δn∥

2 argmin Dn (v) . This re-
standardization relating the criteria explains why the convergence
rate of γ̂ changes from n to an = n ∥δn∥

2 in moving from (6) to (7).
To understand the limit theory in which Dn (·) converges to

D (·), we may rewrite Dn (·) as

Dn (v) =

{ ∑N1n(|v|)
i=1 z1i, if v ≤ 0,∑N2n(v)
i=1 z2i, if v > 0,

where N1n(|v|) =
∑n

i=1 1
(
γ0 +

v
n < qi ≤ γ0

)
and N2n(v) =

∑n
i=1

1
(
γ0 < qi ≤ γ0 +

v
n

)
. Note that Nℓn(·) is a binomial process. For

example, for any given v > 0,

N2n(v) ∼ Bin (n, pn (v)) ,

with pn (v) = Fq
(
γ0 +

v
n

)
− Fq (γ0), and for any v2 > v1 > 0,

the increment N2n(v2) − N2n(v1) is independent of N2n(v1). It is
well known that a binomial process will converge to a Poisson
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