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A B S T R A C T

Multimodal process data that include several subpopulations appear frequently in many complex applications
due to process heterogeneity. Different from the most existing control charts that are only applicable to unimodal
data, a new adaptive monitoring method is proposed in this paper for multimodal data from heterogeneous
processes. Specifically, a Gaussian mixture model is first employed for data modeling. Considering the number of
subpopulations that may change in Phase II, a penalized likelihood function is devised to infer the true number
of subpopulations by shrinking any insignificant or redundant Gaussian components. Our proposed control
chart, is thus not only sensitive to process changes in subpopulation parameters, but also adaptive to changes in
the number of subpopulations. A diagnostic procedure is also followed to classify the changes in multimodal
data. The superiority of our chart is fully demonstrated through numerical Monte Carlo simulations and a real
industrial example in the production process of a 3D printing nylon powder material.

1. Introduction

Statistical process control (SPC) is an important methodology for
achieving process stability. Despite a rich body of SPC charts developed
in the literature, most of these charts, e.g., x chart, are implemented
with an assumption that the normal process data come from a single
operating mode and thus follow a unimodal distribution which has only
one peak in the probability density function (PDF) (see Fig. 1). Some
real complex processes, however, can be a combination of multiple
operating modes, i.e., one operating mode may switch to another mode
during a process. As a result, the process data may follow a multimodal
distribution which has more than one peaks (local maxima) in the PDF
(see Fig. 1). These process data that are generated by a distribution with
multiple peaks are called multimodal data in this paper.

The multimodal process data in fact consist of several mixed sub-
populations, each of which corresponds to an operating mode in the
process, and they are commonly seen in many applications. For ex-
ample, Yu and Qin (2008) illustrated a stirred tank heater process
where the monitored variables, say temperature, would follow different
distributions under different operating conditions. A mechanical mil-
ling process with different levels of cutting depth along its cutting
trajectory results in the multimodality in the distribution of cutting
force signal (Grasso, Colosimo, Semeraro, & Pacella, 2015). In nano-
particle engineering in Park and Shrivastava (2014), a sample of

particles grow through multiple modes and finally converge into dif-
ferent shapes like circle, triangle and rectangle. The last example, which
motivates this work, is the production process of a 3D printing powder
material (see Section 5). Due to multiple thermal stages in the process,
the in-control (IC) powder sizes follow a bimodal distribution.

This paper focuses on Phase II monitoring of multimodal data.
Given a random sample …X X, , n1 , our purpose is to determine whether
the current process distribution, in terms of the PDF f, has shifted or
not. This parallels the hypothesis testing:

= ≠H f f H f f: , : ,0
(0)

1
(0) (1)

where f (0) is the IC distribution. For multimodal data with more than
one subpopulation, H1 can represent two classes of process changes.
One class considers shifts in parameters associated with existing sub-
populations in f, the other involves changes in the number of sub-
populations. In view of this, a control chart for multimodal data should
have capability in detecting both of these out-of-control (OC) types.

The control charts explicitly designed for multimodal data are still
limited in the literature. Yu and Qin (2008), Ge and Song (2009) and
Xie and Shi (2012) have studied the monitoring of multimode processes
in chemical engineering. However, they all assume that the number of
subpopulations which is known or well estimated from historical data is
fixed in online monitoring. Therefore, their charts are only capable for
detecting process shifts related to the existing subpopulations. Another
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viable options are nonparametric or distribution-free charts which re-
quire no specific distribution forms. Although many related charts are
developed based on the rank-related statistics (e.g., the Wilcoxon rank-
sum statistic in Chong, Mukherjee, & Khoo (2017)) or goodness-of-fit
tests (e.g., the Kolmogorov-Smirnov test in Ross & Adams (2012), the
Cramér-von Mises test in Zhang, Li, & Li (2017) and the likelihood
ratio-based test in Zou & Tsung (2010)), in effect, they all ignore
multimodality information so that their charting performance may be
hampered for multimodal data (see Section 4 for evidences).

To exploit multimodality, we adopt the Gaussian mixture model
(GMM) in McLachlan and Peel (2000), Frühwirth-Schnatter (2006) and
Kim, Lee, and Kim (2018) for its great flexibility and interpretability. It
takes several Gaussian components, each of which represents one sub-
population in multimodal distributions. Based on the GMM, H1 in the
hypothesis testing (1) now indicates process changes in both the model
parameters (the proportions and Gaussian component parameters) and
the model order (the number of Gaussian components). Choi, Park, and
Lee (2004), Yu and Qin (2008), Xie and Shi (2012) and Wang, Li, and
Tsung (2018) also monitored the heterogeneous processes by GMMs,
however, the number of Gaussian components in their models is as-
sumed to be unchanged in Phase II.

This paper proposes a control chart that is adaptive to the number of
subpopulations in multimodal data, so process changes in both the
model parameters and the model order can be systematically mon-
itored. By assuming the multimodal data come from a GMM, we design
charting statistics by testing the hypotheses (1) via the likelihood ratio
test (LRT). However, the fact that the model order may change in Phase
II remains a major challenge. Specifically, the likelihood is non-
decreasing over the model order of the GMM given a sample of data, as
the GMM with more components has more model parameters. The
likelihood alone thus cannot determine the model order. Many ap-
proaches have been proposed to overcome this difficulty, in which the
model order is first determined using the Akaike information criterion
(Akaike, 1998), Bayes information criterion (Schwarz, 1978), or dis-
tance measure (Chen & Kalbfleisch, 1996). The model parameters are
then estimated accordingly. This sequential manner, however, has to
search within a predefined model order range and is thus computa-
tionally intensive in online monitoring.

Actually, when fitting data by the GMM with a model order larger
than the true value, two types of overfitting occur as in Chen and Khalili
(2008). Type I overfitting has insignificant Gaussian components with
near-zero proportions, whereas type II overfitting includes redundant
Gaussian components of which the location parameters are very close.
This discovery encourages penalties on the insignificant and redundant
Gaussian components so that the model order and model parameters
can be estimated in one strike from the likelihood function. Our chart is
based on such penalized likelihood functions (see Section 2 for details),
and is combined with the exponentially weighted moving average
(EWMA) scheme.

This paper proposes a penalized LRT-based EWMA chart for mon-
itoring multimodal data, which is a systematic tool capable of detecting
process changes in both the model parameters and the model order. A
diagnostic procedure is also attached for post-signal analysis. In the
following, the adaptive modeling of multimodal data via a penalized
likelihood and design of control chart are discussed in Sections 2 and 3.
The numerical Monte Carlo simulations in Section 4 and the study of a
real motivating example in Section 5 demonstrate the superiority of the
proposed chart. Section 6 concludes this work. Some technical details
are provided in the Appendix.

2. Adaptive modeling of multimodal data

As introduced in Section 1, our main challenge is modeling the
multimodal data with uncertainty in the number of subpopulations in
Phase II, and this is resolved by the penalized likelihood function in this
section.

At first, we adopt the GMM to describe the multimodal data.
Technically, the GMM represents the underlying mixed subpopulations
through multiple Gaussian components, each of which has a proportion
parameter, a mean and a variance parameter. Suppose X is a univariate
random variable that follows a GMM with K components and model
parameter ΩK . Then its PDF is
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where pk is the proportion parameter of the kth component with
∑ == p g x θ1, ( | )k

K
k k1 is the kth Gaussian component with location

parameter θk, and the model parameter
= = … …θ p p θ θΩ p{ , } { , , , , , }K K K K K1 1 .
Give a sample data …x x, , n1 , the above GMM degenerates to the

Gaussian/normal distribution when =K 1 and =p 1k , and tends to be
the kernel density estimation when K continuously increases to be the
sample size n with = =p n θ x1/ ,k k k, the standard Gaussian distribution
being the kernel and σ being the bandwidth parameter (McLachlan &
Peel, 2000). Note that all Gaussian components here are assumed to
share a same variance σ2, since a finite GMM with a common variance
and a large K already has sufficient flexibility to fit multimodal data in
many applications (see Chen & Chen (2003), Chen & Kalbfleisch (2005)
and Chen & Khalili (2008) for instance), and the common variance
constraint can avoid unbounded likelihoods and spurious maximizers in
parameter estimation (Hathaway, 1985). Therefore, the variance
parameter is not the main concern of this paper and is assumed to be a
known constant. The extension of our monitoring method to the case
where the variance is also subject to changes in Phase II is explored in
Section 4.3.

Since the model order Kmay change and is unknown in Phase II, we
model the sample data = …x xx ( , , )n

T
1 using the GMM with a large value

of K (upper bound). Then the log-likelihood function is

Fig. 1. Schematic plots of the PDFs of the unimodal, bimodal and multimodal distributions.
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