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A B S T R A C T

In this paper, we propose a method to predict the remaining useful life (RUL) of systems subject to hard failures,
which are probabilistically linked to system degradation signals (health indictors). A joint modeling framework
is adopted to incorporate both the degradation signals and time-to-event data. In the joint model, a Wiener
process with drift is used to model stochastic degradation signals, and the proportional hazards (PH) model with
nonparametric baseline hazard is used to model time-to-event data. With proposed joint model and Markovian
property of the Wiener process, system RUL could be predicted. Extensive simulations and a case study are
conducted to demonstrate the performance of the proposed method.

1. Introduction

Factories are developing into smart manufacturing environment
with intelligent devices in the 4th industrial revolution (Industry 4.0),
and well connected through the Internet of Things (IoT) (Barbosa &
Aroca, 2017). One of the important features of smart manufacturing is
self-awareness and self-predictiveness ability, in which the remaining
useful life (RUL) prediction plays an important role. RUL is also critical
for conducting system prognostics and health management (PHM) and
conditional-based maintenance (CBM) to ensure system operating or
health conditions, which has arisen intensive attentions in academia
and industry.

With the development of data acquisition technology, extensive
condition monitoring (CM) data can be observed, among them system
degradation signals highly related to system working or health condi-
tions are possible obtained. Based on the available data, the evolution
path of degradation signals as well as system deterioration process
could be well investigated. In the literature, numerous research works
have focused on the RUL prediction with observed data. Among them,
prediction methods can be categorized as physics-based, data-driven
methods, or a hybrid of both. For the data-driven models, data-mining
or statistical methods could be utilized on the basis of observed CM
data. In this paper, we focus on the data-driven method for RUL pre-
diction which is flexible and requires minimal physical knowledge
about the deterioration process.

In the literature, there are two types of failure mechanisms with

respect to degradation signals. One is the soft failure, in which a unit is
declared to be “failed” when its degradation signal reaches a predefined
threshold for the first time, such as Lu & Meeker (1993), Si, Wang,
Chen, & Zhou (2013). The other one is the hard failure which occurs as
a unit fails to perform its intended function or stops working. In hard
failure cases, a threshold does not needed, which is appropriate for
applications with unclear threshold, or threshold simply does not exist.
Compared with two different types of failure, soft failure time is de-
termined by the degradation signal with its threshold, whereas time-to-
event data such as failure times and censoring times must be provided
to analyze hard failure problems with the observed degradation signals.

In order to achieve accurate RUL prediction performance, de-
gradation signals which reflect system health status should be accu-
rately modeled. Stochasticity is a major characteristic of degradation
signals that differentiates individual units and contributes to the un-
certainty in RUL estimation (Si et al., 2013). To consider the stochastic
property of degradation signals, the random effects regression (RER)
model and stochastic process (SP) models are widely used. The RER
models consider the unobservable endogenous factors for a population
with unit-to-unit variability, which was studied by Tsiatis, Degruttola,
& Wulfsohn (1995), Tsiatis & Davidian (2004), Zhou, Son, Zhou, Mao, &
Salman (2014), etc. The SP models are used to represent a collection of
random variables that change over time; a good review can be found in
Ye & Xie (2015).

Different types of stochastic degradation processes are extensively
studied for soft failure problems, such as the Wiener process (Ye, Wang,
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Tsui, & Pecht, 2013; Wang et al., 2017), Gamma process (Pan &
Balakrishnan, 2011; Park & Padgett, 2005), inverse Gaussian process
(Barndorff-Nielsen, 1997; Ye & Chen, 2014), geometric Brownian mo-
tion (Park & Padgett, 2005) and Ornstein–Uhlenbeck process (Ricciardi
& Sato, 1988). The random effects model may also be considered to-
gether with stochastic processes, such as the random effects with the
Wiener process and Gamma process (Wang, 2010; Lawless & Crowder,
2004).

Unlike the extensive literature on soft failure prediction, there are
very limited works for the hard failure analysis and prediction in en-
gineering, such as Liao, Zhao, & Guo (2006), Yu & Fuh (2010), and
Zhao & Elsayed (2004). Zhou et al. (2014) proposed a joint modeling
framework that uses a mixed-effects model for degradation signals and
the Cox proportional hazards (PH) model for time-to-event data. Son,
Zhang, Sankavaram, & Zhou (2015) extended it by considering change-
points in the degradation path.

Besides the statistical methods, data-mining methods have been
studied to predict system RUL dealing with high dimensional CM cov-
ariates. Tian (2012) proposed to use an artificial neural network to
predict life percentage. Khelif et al. (2017) used support vector ma-
chine, and Guo, Li, Jia, Lei, & Lin (2017) used the recurrent neural
network with selected variables to conduct the prognosis. Based on the
studies of degradation patterns, Li, Ding, & Sun (2018) and Zhao, Liang,
Wang, & Lu (2017) utilized different types of neural networks to predict
system RUL.

In soft failure prognosis, SP models are extensively studied using
statistical methods, and the stochasticity of degradation processes also
has been investigated using data-mining algorithms. To the best of our
knowledge, SP models have not been considered in hard failure pro-
blems, although the same justifications of using them apply equally to
degradation signals in both failure types. To fill this gap, we aim to
introduce Wiener process into the joint modeling framework which is
used to analyze hard failures. In particular, the degradation signal will
be described by a Wiener process with drift, and the time-to-event data
will be described using a Cox PH model.

The remainder of the paper is organized as follows. In Section 2, the
methodology is proposed including the modeling, estimation, and
prediction of hard failures. In Section 3, a simulation study is conducted
to demonstrate the performance of the method, and a comparison study
between our proposed method and degradation pattern learning based
method is illustrated. In Section 4, a case study is conducted using real
data. Finally, we draw some conclusions and discuss future works in
Section 5.

2. Methodology

For each unit = …i i n( 1, , ), we observe its event time
=V T Cmin( , )i i i with the indicator function = ⩽Δ 1i T C( )i i , where Ti is the

lifetime and Ci is the censoring time. Also available are the time-fixed
covariates wi and time-dependent covariates = …y yy { , , },i i i j,0 ,

= … = …i n j m( 1, , , 0, , )i at observation times = … ⩽t t t Vt { , , }, ( )i i i j i j i,0 , , .
Collectively, the available data for the ith unit are (V y w t, Δ , ,i i i i i, ).

Time-dependent covariate yi,j of ith unit observed at ti,j could
manifest the system deterioration or operating status, which is also
known as degradation signals. For examples, the crack length of
bearing, the resistance of battery, and light intensity of light-emitting
diode (LED). Time-fixed covariates wi could be categorical data or
dummy variables related to system conditions, such as different man-
ufacturers or types of components.

2.1. Modeling

Assume all the units are sampled from the same underlying popu-
lation, hence they share some similarities but with unit-to-unit varia-
tions, and the variation varies with observation times, which is often

observed from stochastic degradation signals. To model this, a Wiener
process with drift is used, which is a widely used and well-studied
stochastic process in the literature, e.g. Whitmore (1995), Wang,
Balakrishnanb, & Guo (2014).

The evolution of the degradation signal is modeled as

= +y y W t( ),i j i i i j, ,0 , (1)

= +W t t σ B tθ Λ( ) ( ) ( ),i i j
T

i j b i i j, , , (2)

where yi j, is the observed degradation signal at ti j, , yi,0 is the initial status
of the system at ti,0 which follows an i.i.d. normal distribution. N μ σ( , )0 0

2

indicating the randomness of initial statuses, W t( )i j, is the Wiener
process with drift coefficient = …θ θθ [ ]T

k1 and diffusion coefficient σb.
= …t t tΛ( ) [Λ ( ) Λ ( )]k

T
1 is the drift function and ∼B t N t( ) (0, )i is the

standard Brownian motion. For demonstration purpose, we use a
quadratic form (without intercept) where = θ θθ [ ]T

1 2 and
=t t tΛ( ) [ ]T2 . Drift function tθ Λ( )T

i j, can take various forms according
to different applications, transformations may need to be implemented
to use the quadratic form, and higher order regression function could be
considered.

We further denote =F t σ B t( ) ( )i i j b i i j, , for the ith unit, which is a sto-
chastic component of ith unit at ti j, with = =F t( 0) 0i i j, . As F t( )i i j, is not
observable, it could be estimated using = − −F t y y tθ Λ( ) ( )i i j i j i

T
i j, , ,0 , . Based

on the properties of Brownian motion, F t( )i i j, depends only on the latest
−F t( )i i j, 1 . The increments = − −F t F t F tΔ ( ) ( ) ( )i i j i i j i i j, , , 1 are independent and

F tΔ ( )i i j, follows normal distribution − −N t t σ(0, ( ) )i j i j b, , 1
2 . Accordingly, the

observations yi j, only depends on the latest observation −yi j, 1, and the
increment follows a normal distribution.

Following the joint modeling framework as in Zhou et al. (2014),
both the time-dependent and time-fixed covariates affect degradation
process through the hazard function, which can be modeled by the well-
studied PH function (Cox, 1972).

= +h t h t βy γ w( ) ( )exp( ),i j i j i j
T

i, 0 , , (3)

∑= ⩽ <−h t C( ) 1 ,i j
ς

ς t t t0 , ( )ς i j ς1 ,
(4)

where h (·)0 is a nonparametric baseline hazard function using the
stepwise function (Zeng & Lin, 2007; Tseng, Su, Mao, & Wang, 2015),
1(·) is an indicator function with the time interval −t t[ )ς ς1, for the step-
wise baseline hazard rate Cς . tς is the ordered observed failure times,
and ς is the number of observed failure time in historical data used for
estimation, which varies in different applications. β γ, are the coeffi-
cients for the time-dependent covariate (the degradation signal) and
time-fixed covariate(s). With the hazard function in Eq. (3), the prob-
ability density function (pdf) of lifetime is

∫= = −( )f t h t S t h t h s ds( ) ( ) ( ) ( )exp ( ) ,T
t

0 (5)

where ∫= −S t h s ds( ) exp( ( ) )
t

0 is the survival function.

2.2. Parameter estimation

Based on the historical data, the unknown parameters
= β h σ μ σΘ γ θ( , , (·), , , , )b0 0 0 can be estimated using the maximum

likelihood estimation (MLE) method. For simplicity, we assume there is
only one time-fixed covariate, and it is straightforward to be extended
to the multiple time-fixed covariates cases if the covariates are linearly
independent. In this case, both the time-fixed covariate and its coeffi-
cient are scalars, i.e. wi and γ .

Since the Brownian motion has independent and normally dis-
tributed increments, we define

= ⎧
⎨⎩

=
− ⩾−

y
y j
y y jΔ

, 0
, 1.ij

i j

i j i j

,

, , 1 (6)
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