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A B S T R A C T

Void collapse under shock loading has become a model problem to study the nucleation of hot spots in high
energy density materials. While experimental observation of this phenomenon remains elusive, simulations can
help identify the relevant physical mechanisms for heat generation and criticality. A finite element method
approach to simulate shock waves that includes crystal plasticity, with a power-law slip rate, hardening law and
an equation of state is presented. Numerical simulations of shock loading of single crystal β-HMX containing a
cylindrical hole of diameter 10μm are performed with different orientations and impact velocities in 3D and
under plane strain conditions. The elastoplastic response, including the temperature increase due to plastic
dissipation, is strongly affected by the crystal orientation. Specifically, the (1 1 1)-oriented crystal shows the
highest temperature increase. These results can guide the design of experiments to investigate processes at the
micrometer length scales in energetic materials.

1. Introduction

Heat, impact or other form of thermomechanical stimulus may
produce heating in localized regions [3,8]. The temperature and size of
these localized regions known as “hot spots” [29,50] determine the
ignition of energetic materials. Hot spots are nucleated due to dis-
sipative mechanisms such as, inelastic deformation, fracture and fric-
tional sliding [44,3,16]. Due to the important role attributed to voids in
the nucleation of critical hot spots, void collapse under shock loading
has become a model problem for atomistic and continuum simulations
[54,42,41,4,43].

Simulations of the collapse of a 40 nm diameter void in RDX were
performed by Wood et al. [54,53] under a 2 km/s impact shock leading
to a deflagration wave. Eulerian [42,41,26] and Lagrange-Eulerian
[5,4] approaches have been used at the continuum level to study void
collapse in HMX. Rai et al. [42] focused on the sensitivity of elongated
voids subjected to shock loading. Their simulations show how the or-
ientation and aspect ratio enhance initiation. Barton et al. [5,4] de-
scribed a 2D void collapse in HMX induced by shock loading. The shock
velocity in these simulations is in the range 1–1.5 km/s and the void
size is 0.5–1μm [4]. Their model accounts for thermal/mechanical
responses and chemical reactions that are driven by the temperature
field. Shear bands are found to be an important mode of localization
growing out of the pore region and serving as potential ignition sites.

The anisotropic plastic behavior of energetic materials has con-
sequences on the deformation field, the mechanical work and the re-
sulting temperature increase. Since polymer-bonded explosives are
constituted of crystalline grains with random orientations embedded in
a matrix, the orientation dependence of the dissipation mechanisms is
of key importance for ignition sensitivity and has been studied with
atomistic [61] and continuum simulations [18]. The effect of aniso-
tropy and microstructure on polycrystalline HMX is investigated by
Hardin et al. [18]. Their results show that crystalline anisotropy in-
duces significant heterogeneity in the stress and thermal fields. How-
ever, a systematic study of the crystal orientation dependence of the
energy dissipated during void collapse has not been carried out.

In this paper, a Lagrangian model to describe the elasto-plastic be-
havior of β-HMX single crystals at high strain rates is developed and
used to study plastic deformation under shock loading. The single
crystal plasticity model is based on a power-law slip rate and hardening
law [39], and implemented in a finite element solver, as explained in
Section 2. The crystal plasticity model is coupled to an equation of state
introduced in Section 2.2. The different deformation mechanisms are
compared in Section 3. The response of −β HMX with a 10μm diameter
cylindrical hole under shock loading is studied in Section 4, where the
stress and temperature fields due to plastic energy dissipation are dis-
cussed as a function of the crystal orientation.
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2. Material model

While β-HMX is brittle at ambient pressure [40], plastic deforma-
tion becomes important at higher pressures [52,5,15,61]. Molecular
dynamics (MD) simulations have been of key importance to determine
the plastic response in HMX and RDX single crystals during shock
loading [23,10], showing the nucleation of dislocations and a transition
to shear bands at higher impact velocities. In this section the elasto-
plastic and shock response models of β-HMX single crystals are pre-
sented. The Cauchy stress σ is calculated and the conservation of linear
momentum:
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is solved, where ρ is the density and u the displacement vector. All the
model parameters used in the following simulations are reported in
Table 1.

2.1. Single crystal plasticity model

The mechanical response model is based on the finite strain form-
alism, in which a multiplicative decomposition of the deformation
gradient into an elastic, Fe, and plastic, Fp, parts is used:

=F F F· .e p (2)

The plastic deformation gradient Fp deforms the crystal lattice in an
intermediate stress-free configuration, which in turn is deformed into
the current configuration by Fe [45]. The time evolution of the plastic
strain is calculated following standard single crystal plasticity models
[45]. The rate of the plastic deformation gradient is the sum of the
plastic strain rate on each slip system:
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where Ns is the number of slip systems, γṗl s, is the plastic strain rate, ̂bs is
the slip direction, and ̂ns is the slip plane normal of the slip system s.
The slip directions and slip plane normals of β-HMX single crystals are
reported in Table 2 in Cartesian coordinates. They correspond to the
slip systems given in P c2 /1 notation in [4].

The plastic strain rate γṗl s, is calculated using a Hutchinson power-
law model [39,24] as:
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where m is a constant [11], τs is the resolved shear stress, and τth s, the

threshold resolved shear stress of the slip system s. The constant γ0̇ re-
presents the characteristic rate at which dislocations overcome barriers
by thermal activation. The absolute value of the plastic strain rate γṗl s,
of every slip system is limited to γ ̇ pd0, due to phonon drag [5].

The threshold stress τth s, is calculated on every slip system and de-
pends on the strength ratio rs of the slip systems [4] as:

=τ r g ,th s s s, i i (5)

where gsi is a resistance function given by the power law [24]:
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where hs si j is a hardening matrix, and gsat is the saturation slip resistance
and a is a constant. The resistance function represents the hardening
due to forest dislocations piercing the slip system. The initial value of
the slip resistance =g t( 0)si and the saturation value gsat for every slip
system are taken from the constitutive model in [5], assuming a neg-
ligible initial dislocation density and a balance between dislocation
generation and annihilation at saturation [35], which corresponds to a
dislocation density of 1017 m−2. This value of dislocation density is very
high for a material with brittle response. However, no experimental
study on the dislocation density is available on samples after de-
formation.

The coefficients hs si j in Eq. (6) are all equal and determine the in-
crease of the resistance function gsi, depending on the increase of the
plastic strain γΔ pl s, j on the slip systems. Therefore, the plastic strain
increment to reach the saturation stress is of the order of g h/sat s si j. The
coefficients hs si j are chosen to match the hardening behavior of the
dislocation density model used in reference [5], in which a Taylor
hardening law is used [2]. The crystal plasticity model was calibrated
with gas gun experiments [5,15]. The calibration was done only for two
different pressures (1.5 GPa and 2.4 GPa), while higher pressure ex-
periments would be required to find a more accurate hardening law and
to study the dislocation density at saturation. However, in the following
simulations at 200m/s impact velocity, hardening does not affect
strongly the results because the plastic strain is typically smaller than
5%. Therefore, as shown in Fig. 1(a) and explained in Section 3.1, we
expect a hardening of at most 10MPa.

Finally, twinning is not considered in the present model. It is re-
cognized as a mechanism for permanent deformation in β-HMX
[15,59]. However, the present crystal plasticity model is calibrated
without considering twinning. Therefore, the amount of plastic de-
formation is comparable with experiments, even if the amount of
twinning cannot be predicted. Twinning in β-HMX is included in the
model by Zamiri and De [57]; however, the plastic strain rate and
hardening law are assumed to be the same for slip and twin systems.
This is because of the lack of experimental knowledge about the twin-
ning rate in β-HMX.

Table 1
Material and model parameters used in the simulations [5,4,6,60,56].

Reference bulk modulus (K0) 12.4 GPa
Bulk modulus pressure derivative ( ′KT0) 10.4
Equation of state exponent (n) 6.6
Reference density (ρ0) 1.9 g/cm3

Reference sound speed (c0) 3.5 km/s
Reference temperature (T0) 293 K
Plastic strain rate coefficient (γ0̇) 0.001 ns−1

Plastic strain rate exponent (m) 0.1
Phonon drag strain rate limit (γ ̇ pd0, ) 0.0025 ns−1

Hardening matrix (hsisj) 9.34 MPa

Hardening exponent (a) 2.5
Initial slip resistance ( =g t( 0)s ) 103.03 MPa
Saturation slip resistance (gsat) 155.73 MPa
Bulk viscosity coefficient (C0) 0.1
Bulk viscosity coefficient (C1) 0.1
Specific heat (C) 1576.3 J/(kg K)
Thermal conductivity (k) 0.31W/(m K)
Volumetric thermal expansion coefficient (α) 2.1 · −10 4 K−1

Table 2
β-HMX slip systems, slip plane normals and Burgers vectors written in Cartesian
coordinates and strength ratios [5,4]. They correspond to the slip systems given
in P c2 /1 notation in [4].

Slip system ̂n ̂b ri

s1 (0 1 0) [1 0 0] 1.0
s2 (0 0.545 0.838) [1 0 0] 0.963
s3 −(0 0.545 0.838) −[ 1 0 0] 0.963
s4 −( 0.660 0 0.751) [0 1 0] 0.933
s5 (0 0 1) [1 0 0] 1.681
s6 −( 0.660 0 0.751) [0.751 0 0.660] 0.376
s7 (0 0.545 0.838) − −[ 0.348 0.786 0.511] 0.931
s8 −(0 0.545 0.838) − −[0.348 0.786 0.511] 0.931
s9 −(0.844 0.500 0.194) − −[ 0.224 0 0.975] 0.701
s10 − −(0.844 0.500 0.194) [0.2241 0 0.975] 0.701
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