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A B S T R A C T

Materials for advanced ultra-supercritical (A-USC) power plants with steam temperatures of 700 °C and above
are extremely needed in order to achieve high efficiency and low CO2 emissions. Alloy design based on machine
learning is of great importance to explore the space to decide connections between compositions and perfor-
mances. In this work, we employed an artificial neural network (ANN) in the machine learning framework to
compete a two-way design which is defined by predicting the target properties and designing alloys over the
dataset consisted of experimental data. Combined with Genetic Algorithm (GA), the ANN model was optimized
to improve the accuracy over 98% by training and testing the full dataset. Meanwhile, the model can find the
global optimization values of two performances: yield strength and creep rupture life eventually. With a true
accuracy of over 90%, we designed a group of compositions of Ni based superalloy to meet the requirements of
microstructures and properties for A-USC plants. Further experimental validation was also conducted, which
proved that our ANN model optimized by GA can be used to predict and design superalloys for A-USC.

1. Introduction

Energy with lower carbon dioxide (CO2) emissions is increasingly
necessary to protect the global environment. The adoption of ultra-su-
percritical (USC) power plants with increased steam parameters can
significantly improve the efficiency, which reduces fuel consumption
and the emission of environmentally damaging gases. With the devel-
opment of advanced coal-fired power generation technology, the
working temperature and pressure have been gradually improved, re-
sulting in a much higher requirement for high temperature strength and
creep resistance of materials used in generating units [1,2]. For ex-
ample, materials for advanced ultra supercritical (A-USC) plants at
750 °C require that not only the creep rupture strength corresponding to
the 100 thousand hours endurance life at 750 °C should be higher than
100MPa, but also less pollution and lower costs. There only exist very
few Ni based superalloys being used in the superheater and reheat pipe
of the generator, such as Inconel 740/740H [3–5]. However, the cost of
Inconel 740/740H alloys is very high because of the high content of Co
element. Thus, designing new and low-cost Ni-based superalloys
meeting the service requirements at 750 °C is absolutely essential.

The traditional scientific methods of intuition and trial and error

cannot keep up with the rapidly increasing need of modern industry for
new materials. It is now common for innovation in materials research
and development to accelerate the process from discovery to the ap-
plication of new materials. In the traditional methods of alloy design, it
is difficult to accurately reflect the complex nonlinear relationship be-
tween the components and the properties of Ni based superalloys.
Besides, the number of allowed candidate alloys can be over 106 when
the gap of their composition interval is 10% and their concentrations
are measured to 0.1%. It is a hard work to search proper alloys in this
vast space via experiment methods.

Recently, as a new method of alloys design, machine learning (ML)
was used to complete the target properties, reduce the design costly and
avoid dangerous operation, which can recognize data patterns and
obtain insights from the data without explicit programming [6–8]. Lots
of successful examples of ML in material science have certified its fea-
sibility in alloy-design [9–15]. The artificial neural network (ANN)
technique inspired from the functioning of human brain is probably the
most widely used algorithm in ML, and the process of this technique
depends on the functional relationship of efficient input-output dataset
[16–21]. However, two issues exist in the ANN algorithm: (1) the ac-
curacy of prediction in alloy properties with composition is high but not
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in the inverse process; (2) in the learning process, the ANN is easy to fall
into a local optimization. Therefore, it is essential to develop an ANN
model combined with other ML algorithms to solve more questions of
material science by deep learning. Genetic Algorithm (GA) inspired
from the procedure of the chromosome changing in nature can find the
best object by searching in the global scope and participate in the op-
timization of other algorithms.

In this study, we combined the ANN and Genetic Algorithm (GA) to
achieve the target of two-way design of alloys and realize the global
optimization. Firstly, we competed the dataset and chose 5 key features.
Secondly, we adjusted the accuracy of model prediction by training and
testing the model, and verified that our model can find the global op-
timization simultaneously. In the end, a new Ni based alloy for A-USC
units was designed to certify the feasibility of two-way alloy design
with the target properties, which also were verified by experiments
with the composition provided by our prediction.

2. Dataset

In order to train the network, firstly, a related dataset should be set
up for the A-USC superalloy. The data are mainly collected from the
reported results of international symposiums on Superalloys
(1996–2016) and experimental results. The dataset contains 580 rows
and 5 columns. Each row is called as an instance and 5 columns called
as features in the machine learning are used to describe the properties
of superalloys [22]. In other words, our dataset has 580 instances and 5
features. In order to prevent the ANN model from over-fitting or just
memorizing the data, the dataset was divided into training and testing
data set and the test data was used to evaluate the performance of the
model. If the testing error is very high compared to the training error,
the network is regarded as over-fitting the data, and the model needs to
be trained again until a properly fitted network is established [20].
Then the trained and tested neural network may be presented with a
verification data set to evaluate the accuracy of the network and finally
presented with the actual data to be processed [23]. In the dataset, data
from 430 rows were used for training the network, while from other
150 rows for testing. In addition, we selected 6 alloys which were not
used earlier for the purpose of training or testing to complete the va-
lidation. From Table 1, we can see that the 5 features in first 5 instances
are volume fractions of γ and γ′, misfit of γ/γ′, yield strength and high
temperature creep rupture life which was calculated via logarithm,
respectively. In this work, the alloy components contain Ni, Al, Co, Cr,
Fe, Mo, Nb, Ti, W, Si, B, and C [24–30]. The element of Ni was selected
as the matrix element, and Al and Ti as elements of precipitation
strengthening. In addition, the elements of solid solution strengthening
consist of Co, W, Mo and Nb, corrosion elements are Cr and Si, and
elements of reinforcing structure stability are B and C. The element of
Fe was added to reduce the cost. What’s more, the mean grain size and
the gamma prime phase size were included in our database because of
their important effect on the thermal process. Ultimately, the input of
the network was consisted of compositions of the 14 elements and the
first two features in Table 1, while the predicted error of remaining
three features as output. Here, the input was considered as independent
variables while the output as dependent variables of the model.

3. Establishment of an optimizing ANN model

Before establishing the ANN model, we used the dataset above to
normalize the feature values so that they can fall within the range of 0
and 1 by the following function:
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where the ′x is a normalized feature and xi refers to the original data.
xmax i, and xmin i, are the maximum and minimum values of the corre-
sponding feature. This process ensures that the features inputted into
the model have the same numeric scale and can be equally treated.

Among various ANN models, the most popular one is the feed-for-
ward back-propagation neural network (BPNN). Fig. 1(a) shows a
schematic representation of the neural network. The network contains
three layers: input layer, hidden layer and output layer. The values of
input variables in the input layer are transformed into the hidden layer
and then are calculated to realize the goal of corresponding output. In
this process, the hidden layers and their neurons play roles of combi-
nation and transinformation. Once the combined effect on each hidden
neuron is determined, the activation at this neuron is determined via a
transfer function. There are some common transfer function such as Sgn
function and Sigmoid function that are used to connect the neurons. As
shown in the Eq. (2), Sgn function gains the output of 0 or 1 via in-
putting the variable x, where the value 0 means neurons inhibition
while the value 1 means neurons excitation. Another common function,
sigmoid function, compresses the data with huge range to an interval of
0 to 1. It should be noted that the sigmoid function is a generally used
transfer function though there are many other nonlinear functions can
do the same thing [31]. The function sigmoid(x) is expressed by f1(x):
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The output data is also calculated by the activation function f1(x)
between the hidden layer and the output layer. During the back pro-
pagation of the signals, the weights and bias at each neuron are mod-
ified to minimize the output error. This process is known as training.
Some optimization algorithm are usually used to complete the process,
viz. Levenberg-Marquardt (trainlm), Bayesian algorithm (trainbr), scaled
conjugate gradient (trainscg), resilient (trainrp), gradient descent
(traingd), gradient descent with momentum (traindm). Levenberg-
Marquardt algorithm has been found to be very efficient for ANN
modeling by various investigators [19,23]. After training the model
successfully and confirming the parameters in the model, the network
architecture can be frozen. In the process of predicting, we used a fit-
ness optimization function shown as Eq. (3) to evaluate the accuracy of
the model [32].
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where A, B and C are the predicted values, and AE , BE and CE are the
expectation values. It can be seen that when the prediction value equals
to the expectation one, the function reaches its maximum value of 1,
indicating the best prediction result. On the contrary, the closer you get
to 0, the worse it gets. Fig. 1(b) shows a neuron model in the neural
network consisting of the input ′xi , output ′y , weight ωi and threshold θ.
Obviously, the calculated results of the network are determined by the
value of weight ωi and threshold θ. However, whether the prediction
result of ANN is local minimum or global minimum is not certain due to
the random of weight and threshold. In order to gain results close to
global minimum, we used the Genetic Algorithm (GA) to optimize
weight and threshold in the ANN model [18].

The ANN and GA are combined into a new network showed in
Fig. 2. When we provide the ANN with a dataset, the network will learn

Table 1
List of the first 5 instances with 5 features used.

γ content γ′ content Mismatch of γ/γ′ Yield Stress LOG(creep rupture life)

52.93 29.24 0.0123 952.74 5.16
60.56 25.6 0.0343 909.43 5.06
56.69 26.07 0.0474 860.89 5.13
53.06 29.19 0.0642 876.76 5.15
50.53 30.39 0.0307 975.52 5.16

All the units of the first 3 features are vol%, and the remaining 2 features are
MPa and h, respectively.
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