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A B S T R A C T

In this work, cellular growth under transient conditions is investigated by using a developed quantitative phase-
field model in which both the pulling speed and thermal gradient are time-dependent variables. Cellular tip
shapes during transient growth are first characterized using the three-dimensional Saffman-Taylor viscous finger
shape equation. Simulation results show that cellular tip and shoulders under non-steady-state conditions can be
described by this simple mathematical model even at large Peclet number. The problem of cellular pattern
evolution during directional solidification in the laser molten pool is possibly that of viscous finger in fluid
mechanics. Previous tip splitting criterion is not applicable in our work. The mechanism of cellular tip splitting
and later tip crack deepening under transient conditions is first studied, this interesting phenomenon may result
from the coupling effect between morphological instabilities which can be measured by the shape factor and
cellular spacing, and non-equilibrium of tip solute concentration which provides the driving force for deepening
of the bifurcation.

1. Introduction

Interface dynamical instability has fascinated many metallurgists
and physicists for years, and today the field of pattern forming in-
stabilities elicit interest from distinctly different disciplines, ranging
from alloy solidification to medicine and biology [1–3]. The in-
vestigation of dynamical instabilities has achieved noteworthy pro-
gresses in the several past decades due to theoretical advances [4–6],
developments of computational techniques [7] and utilizations of pre-
cise experimental techniques such as real-time synchrotron X-ray
radiography [8,9].

Cellular shapes are tightly related to cellular spacing which is one of
the foremost characteristics of directional solidification. Previous stu-
dies have shown that there exists a selection mechanism of cellular
spacing [10]: After planar instability, the spacing adjustment of the
cellular pattern is determined by the tip splitting and submerging me-
chanism to keep the cellular spacing within the stable range. If the
spacing is too small, the cell submerging mechanism works to increase
the spacing; otherwise, the tip splitting mechanism works to narrow the
spacing.

The cellular tip splitting mechanism is an unsolved question re-
quiring further investigations. Two distinctively different theories have
been proposed to tackle this noteworthy phenomenon. One is the noise
induced perturbation theory. This theory suggests that the thermal

fluctuation in the liquid phase near the cellular tip could be amplified,
which would further cause tip splitting instability. Johann Nittmann
et al. [11] studied tip splitting without considering interfacial tension
through the experiment in which a fluid pushes into another miscible
fluid of higher viscosity. In the experiment they related this growth
form to a single statistical mechanical model, finding that noise re-
duction arising from suppression of fluctuations does introduce a
characteristic finger thickness. Based on the noise induced perturbation
theory, Chen et al. [9] carried out a thorough numerical simulation
aiming at answering the question of tip splitting mechanism responsible
for the seaweed pattern transition under steady-state conditions. An-
other theory was recently proposed by Wang et al. [12]. They believe
that a deterministic dynamic mechanism for tip splitting may exist, i.e.,
the cellular tip splitting is deterministic rather than noise-induced.

The steady-state solidification conditions were used in most ex-
perimental and simulation works. However, the steady-state conditions
of a fixed temperature gradient and a fixed pulling speed is just an ideal
process in the lab through careful control of the experimental proce-
dure. Although steady-state solidification is an important academic
issue, it is far from representing conditions really occur in industrial
manufacturing, such as in the laser melt pool during wire and laser
additive manufacturing (WLAM) conducted in the current work. The
growth conditions during WLAM process are complex and often varying
spatially within a build due to the variable thermal histories. The
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WLAM is a potentially disruptive manufacturing technique in which
large metallic materials can be fabricated layer by layer [13–15]. So-
lidification in this process controls the size of the grains, the dendritic/
cellular morphology, the extent of microsegregation, and ultimately the
mechanical properties of the product. Therefore, understanding of the
melt pool solidification behavior under transient conditions is essential.

To date, no comprehensive studies of cellular tip splitting under
non-steady-state conditions have been reported yet. In this work, a
quantitative thin-interface phase-field model is used to simulate the
cellular pattern evolution during wire and laser additive manufacturing
under transient conditions where the thermal gradient and pulling
speed are time-dependent. Cellular tip shapes under transient condi-
tions are first characterized using the three-dimensional Saffman-Taylor
viscous finger shape equation. The mechanism of cellular tip splitting
and later tip crack deepening are investigated by combining the shape
factor, cell spacing and tip solute concentration.

2. Phase-field model description and convergence study

The phase-field method has emerged as promising candidate of a
fundamental and self-consistent theory for modeling microstructure
evolution including cellular growth in recent years [16–23]. In this
work, a quantitative phase-field model is used to simulate the cellular
pattern evolution during non-steady-state growth based on the thin
interface analysis which was proposed by Karma and co-workers
[24–26] and further developed by Nikolas Provatas [27,28]. Alloy so-
lidification in the laser melt pool during WLAM can be regarded as two-
dimensional directional solidification in an externally imposed time-
dependent temperature gradient G t( ), with surface-tension anisotropy γ
moving in the z direction at a time-dependent pulling velocity V t( )p .
The relative orientation of preferential crystal growth is supposed to be
parallel to the heat flow direction.

In our model, the Ni-Nb alloy system is in the dilute alloy limit. The
solidus and liquidus lines are straight and with slopes of m/k and m,
respectively. The partition coefficient k (assume <k 1) is the ratio of
the equilibrium concentration on the solid side of the interface to that
on the liquid side. In addition, the solute transport is assumed to be
diffusive, with diffusion in the solid and attachment kinetics neglected.
Besides, the latent heat of fusion is supposed to be sufficiently small,
and the thermal conductivities of the liquid and solid are sufficiently
large and close to each another. The temperature field is defined by the
modified “frozen temperature approximation,”

∫= + − − ′ ′( )T z t T G t z z V t dt( , ) ( ) ( ) ,
t

P0 0 0 (1)

where =T z T( , 0)0 0 is the reference temperature and z the heat-flow
direction. The interface is assumed to be in local equilibrium given by
the Gibbs–Thomson relation:

= − − −T T m c κ v μ| | Γ / ,m l n k (2)

where Tm is the bulk melting temperature of the pure material, cl is the
concentration on the liquid side of the interface, = γT LΓ /m is the
Gibbs–Thomson coefficient, L is the latent heat of fusion per unit vo-
lume, κ is the interface curvature, vn is the normal interface velocity and
μk is the atomic mobility at the interface. Under the above assumptions,
the sharp-interface equations can be derived:
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where D is the solute diffusion coefficient in the liquid and ∂ +c|n is the
normal gradient of concentration on the liquid side of the interface,

=d TΓ/Δ0 0 is the chemical capillary length, and = −T m k cΔ | |(1 ) l0
0 is the

freezing range, = = −l T G m k c GΔ / | |(1 ) /T l0
0 is the thermal length, and

=β μ T1/( Δ )k 0 is the kinetic coefficient. cl
0 is the equilibrium con-

centration on the liquid side of the interface at T0 defined as = ∞c c k/l
0 ,

where ∞c is the background concentration in the liquid phase far away
from the advancing interface. In addition, the fourfold anisotropy
function with anisotropy strength ε4 in two dimensions can be described
as:
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where ̂ = −∇
→

∇
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n ϕ ϕ/| | is the unit vector normal to the interface.
The current

→
Jc is introduced to embody thermal noise-induced

concentration fluctuations in the liquid phase whose components are
random variables obeying a Gaussian distribution with variance [29]
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where the noise magnitude Fc is determined through the fluctuation-
dissipation relation
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where 〈 〉δc( )2 is the equilibrium average of the square of the departure
of the concentration from its equilibrium value in a microscopically
large but macroscopically small volume VΔ , NA is Avogadro’s number
while v0 the molar volume of solvent atoms. This term is critical since it
provides the possibility to investigate the noise amplification me-
chanism on side branching or tip splitting [30].

A phase-field parameter ϕ is employed here, which takes the value
= −ϕ 1( 1) in the solid (liquid), varying sharply but smoothly across a

diffuse interface. The complete set of the phase-field equations in-
cluding anisotropy are given by
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where U is the supersaturation field defined as

=
−

⎡
⎣⎢ − + +

− ⎤
⎦⎥

U
k

c c
ϕ k ϕ

1
1

/
(1 )/2 (1 )/2

1 ,l
0

(11)

= −q ϕ ϕ( ) (1 )/2 is the interpolation function which governs diffusivity
across the interface. The fluctuating current term

→
Ju obeys the same

correlation as in Eq. (10),
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which depends on the order parameter ϕ via the solute diffusivity
Dq ϕ( ). The magnitude Fu is defined via the relation
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combining Eqs. (12) and (13), the following relation can be obtained:
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and the constant noise magnitude,
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