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A B S T R A C T

In this paper, a multiscale dynamic transition is analyzed for metallic materials. The boundary element method
(BEM) is used in order to model macro and micro domains, being considered isotropic and anisotropic properties
respectively. To connect both scales, a displacement field is obtained from the macroscale, and it is imposed to a
micro domain. Thus, assuming polycrystalline structures at a lower level, the dynamic response is found. The
transient analysis is implemented by the dual reciprocity method (DRM) to evaluate the non-linear and time-
dependent problem. Furthermore, the Houbolt algorithm is applied to solve the time integration scheme. Finally,
numerical examples are presented demonstrating the validation of the dynamic transition between the macro
and micro scales.

1. Introduction

Nowadays, some of the primary goals of science and technology are
to understand and control the behavior of materials on different space
and time scales. The reason is the relevance of the microstructure and
how it affects the macro-domain. There are several engineering mate-
rials that present a granular structure at the microscale, e.g. metals,
alloys, and ceramics. The constitutive behavior is related to the
homogeneous properties at the macroscale and heterogeneous proper-
ties at the microscale, see Fig. 1. Under those circumstances, it is ne-
cessary to consider both scales inside a hierarchical modeling [1].

The multiscale analysis has emerged as a research area to evaluate
and connect the physical response of materials under operational con-
ditions. This analysis is determined by a hierarchy process and three
categories can be distinguished. In the first category, a high resolution
is applied to a small part inside the macro-domain, in which particular
details of the morphology need to be solved (e.g. dislocations, cracks,
etc.). In the second, the category relies on a macroscopic description
that has to be resolved from an essential microscale analysis. In the
third category, parts of the macro-domain are fully resolved at the
microscale, and other parts are probed at the microscale only through
the effective macroscopic response [2]. These types of analyses present
a hierarchy process, and not only connect theories and experiments but
also is a feasible and non-expensive tool to be used in the laboratory
[3]. However, there are some obstacles to overcome when the in-
formation is being transferred between scales. The first one is the

continuum and classical model used to approximate the geometry of the
problem, and second the computational cost [4].

Recently, analyses of polycrystalline materials have been developed
in order to obtain the mechanical response in a multiscale framework.
To study the influence of micro defects on a macroscopic domain and
under static loads, the extended finite element method (XFEM) has been
used by Liu et al. [5] and Fu et al. [6]. To describe the crack propa-
gation in polycrystalline domains, the variational multiscale method
(VMM) has been incorporated with enrichment functions to represent
the microscale, while a generalized finite element method (FEM) has
been applied to model the macroscale [7]. In most of the works about
multiscale transition, the FEM has been widely used [8–12]. However,
using this numerical technique, the mesh refinement at the microscale
needs to be much higher. Owing to the high gradients and internal force
concentration over small regions, the BEM has been applied as an al-
ternative computational method to model metallic materials. Sfantos
and Aliabadi [13] introduced a 2D macro and micro analysis of poly-
crystalline materials under static loads. The authors considered the
representative volume elements (RVEs) to transfer the mechanical re-
sponse between macro and micro scales. However, in this type of
transition, the information is constrained by the size of elements that
are required to be much smaller than in the microscale. A transient
analysis using BEM was presented by Galvis and Sollero [14]. The au-
thors related the mechanical behavior of polycrystalline materials
under dynamic loads.

This work presents the first 2D dynamic approach to couple macro-
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micro scales using BEM, to the author’s knowledge. In order to consider
the relevance of material properties at different scales, both isotropic
and anisotropic media are considered. Furthermore, internal points are
evaluated at the macroscale to obtain the prescribed boundary condi-
tions to be applied at the microscale. A parallelization on a shared
memory architecture, using Fortran-OpenMP, is applied to evaluate the
BEM matrices. Finally, the results are presented with analytical solu-
tions to validate the multiscale transition, showing the displacement
field at different space and time scales.

This paper is organized as follows. Section 2 introduces the multi-
scale implementation. The elastodynamic BEM formulation is described
in Section 3. Numerical examples and the multiscale transition are
provided in Section 4. Finally, some conclusions are presented in Sec-
tion 5.

2. Multiscale approach

In order to develop the multiscale transition of metallic materials,
this work analyzes the influence of the macroscopic conditions on a
microscopic structure. It is known that both scales can be modeled by
continuum methods. The range of simulations begins at a length and
time of about −10 6 m and −10 6 s, respectively [3].

At the macroscale, the aforementioned materials present homo-
genous properties. In this scale, the material is typically assumed as an
isotropic medium. Here, the BEM is implemented to model the time-
space domains, where Kelvin’s fundamental solutions are used to
evaluate the mechanical response. On the other hand, such materials at
the microscale, where polycrystalline structures are found require an-
other formulation. Thereby, the BEM must be implemented applying
anisotropic fundamental solutions. In addition, a multizone framework
must be considered due to a large number of crystals to be analyzed.

Standard methods are presented in the literature to normalize the
number of crystals that are contained within an area of 1.0 mm2. The
American Society for Testing and Materials (ASTM) specified the
average number of grains for metallic materials [15]. Iron at room
temperature, whose properties are used in this work, contains around
2000 to 5000 grains per square millimeter.

Regarding the mesh discretization, Fig. 2 illustrates the BEM
boundary modeling to both macro and micro scales. At the microscale is
useful to model each grain as a continuum body applying displacement
compatibility and traction equilibrium at the grain interfaces. Fur-
thermore, the polycrystalline structure can be reproduced by the Vor-
onoi tessellation algorithm [16]. This algorithm has been extensively
used to represent a grain morphology, e.g. [14,17,18].

In the context of the macro-micro transition, this work intends to
consider all the requirements to treat an enhanced multiscale approach.
First, the internal points are evaluated from the macroscale to obtain
the dynamic displacement response. Consequently, the microstructure
is conditioned by the macro results as prescribed boundary conditions,
and the use of RVEs is avoided. Second, owing to the larger number of
regions to be evaluated, the critical sections of the BEM code are par-
allelized. The sections to be parallelized correspond to the computation
of BEM matrices and the solver of the linear system of equations. The
solution of this system is carried out using the Pardiso solver [19,20],
which is a thread-safe, high-performance, robust memory efficient for
solving large sparse unsymmetric linear systems equations on a shared-
memory architecture. The Fig. 3 describes a general flowchart of this
multiscale process.

Fig. 1. Multiscale visualization for macroscopic and microscopic domains.

Fig. 2. 2D multiscale discretization for macro and micro domains.
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