ELSEVIER

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

First principles investigation on the elastic and electronic properties of Mn, Co, Nb, Mo doped LiFePO₄

Dongxu Zhang, Jie Wang, Kangze Dong, Aimin Hao*

School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China Kev Laboratory of Dielectric and Electrolyte Functional Material Hebei Province. Oinhuangdao, PR China

ARTICLE INFO

Keywords: LiFePO₄ Band structure Formation energy Elastic Anisotropic

ABSTRACT

In this work, the mechanical stability and electronic property of LiFePO₄ doped with Mn, Co, Nb and Mo studied using the first principles calculation. The doped LiFePO₄ has low defect formation energy and meets the criterion of mechanical stability, indicating that the doping of the four 3d transition metals can be stable. Band structure calculations depict half-metallic nature of the doping system. By calculating the Debye temperature and Poisson's ratio, it is found that the dopants can improve the mechanical stability of LiFePO₄. In addition, the study of the anisotropy of the material also shows that the doping of Co can make the material tend to be more isotropic. The above shows that the doping of Mn, Nb, Mo, especially Co, can improve the mechanical stability of the material and reduce the degree of anisotropy of the material, thereby reducing the risk of microcracking and shear deformation of the material.

1. Introduction

The olivine-type LiFePO4 was put forward by Padhi [1] in 1997 firstly. It can be used as cathode material for Li ion second battery. It attracts much attention, because of its high theoretical capacity, good stability and safety, low cost and environmental friendly [2]. At present, this material is mainly used in Electric Vehicle (EV) and Hybrid Electric Vehicle (HEV), but the low ionic and electronic conductivity affects its cycling performance and restricts its further application on lithium batteries [3]. In order to improve its performance, many efforts have focused on particle size reduction, carbon coating and cation doping [4-8]. In these methods, the cation doping has attracted much attention as an effective method. Wang and co-workers [9], by first principles calculations and experiments, confirmed that the doping of Mo can enhance the electronic conductivity of materials. Chung et al. [10] have been observed that the electrochemical properties of LiFePO₄ were improved by doping Nb. All the above studies indicate that doping can effectively improve the partial performance of materials. However, current doping studies ignore the effect of material stability on battery performance. And the stability and safety of the battery materials are the basis of its application. At the same time, it will also greatly affect the performance of the material.

The unstable lattice vibration will cause phase transition of the material [11]. And external pressure may also lead to material

deformation, resulting in material instability. Wang et al. [12] found that after 60 cycles, the charging and discharging curve of LiFePO₄ would have obvious slope characteristics. The polarization is increased upon cycling. In addition, flaws can be observed in some particles after 10 cycles, which should be a result from internal high strain during lithium extraction/insertion process. Maxish et al. [13] use the first principle to calculate the elastic properties of Li_xFePO₄. It is found that LixFePO4 has a smaller shear modulus and a higher degree of anisotropy compared with other cathode materials, which leads to the decrease of the capacity of the LiFePO₄ and the poor cycle performance. Because the lattice structure symmetry of LiFePO₄ after doping will be changed, the structural stability of materials will also be changed. As a commercially available cathode material, LiCoO2 also suffers from the breakdown of micro-structure due to internal strain [14]. At present, many studies have shown that the doping of metal cations in Co site can effectively protect the structural stability of LiCoO2, inhibit the phase transition and improve the cycle performance of the material [15-17]. Therefore, the doping in Fe site may play a positive role in improving the structural stability of LiFePO4 and improving its cycling performance.

To the best of our knowledge the change of LiFePO $_4$ stability after doping has not been investigated. In this work, four elements of transition group Mn, Co, Nb, and Mo are selected for substitution. By calculating the formation energy, elastic properties and anisotropy, the

^{*} Corresponding author at: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China. E-mail address: haoam@neuq.edu.cn (A. Hao).

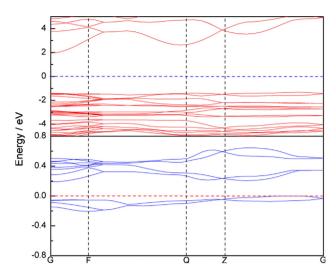


Fig. 1. Bulk model of M-doped LiFePO₄ (M = Mn, Co, Nb, Mo).

influence of different doping elements on the structure stability of the material is studied.

2. Computational details

All calculations are performed using the CASTEP in the framework of the density functional theory (DFT). The general gradient approximation (GGA) by Perdew and Wang (PW91) for the exchange-correlation was used. The configulation of Li-1s² 2s¹, O-2s² 2p⁴, P-3s² 3p³, Fe-3d⁶ 4s², Co-3d⁶ 4s², Nb-4s² 4p⁶ 4d⁴ 5s¹ are treated as the valence electrons for the Ultrasoft Pseudopotentials (USPP). Energy cut-off for the plane waves (380 eV) and a Monkhorst-Pack mesh (3 × 4 × 5) [11] were applied to ensure the total ground state energy convergence of 1.0×10^{-5} eV per atom. For the geometry optimization, Broyden – Fletcher – Goldfarb – Shanno (BFGS) algorithm was used. For all the calculations $1\times2\times1$ supercell were used.


As shown in Fig. 1, the calculation model of LiFePO₄, space group is Pnma, has an orthorhombic olivine structure. Each cell contains four formula units and 28 atoms. The doping models were obtained by replacing a Fe atom in $1\times2\times1$ supercell. And the doping concentration of all doped models is 1/8. In the crystal structure, each FeO₆ octahedron is connected by the corners shared. Meanwhile, FeO₆ octahedron linked to two LiO₆ octahedron and one PO₄ tetrahedron by the edge shared.

3. Results and discussion

3.1. Geometries, electronic property and formation energy

The lattice optimization results of the undoped system are basically consistent with those measured experimentally. We have carried out spin-polarized electronic structure calculations of LiFePO₄. The result is shown in Fig. 2. It can be seen an energy gap of 0.19 eV of the minority-spin bands. Our results are in good agreement with Yamada et al. [3]. It indicates that the models and parameters used in the calculation are reasonable.

The variation of the side length of the doped system is less than 1% in Table 1, indicating that the doping does not destroy the original lattice structure, and the doping concentration is more reasonable. The change of lattice volume after doping is consistent with the ionic radius

Fig. 2. Band structures of LiFePO₄. The red and blue lines represent majority-spin states and minority-spin states, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Lattice parameters of LiFePO₄ before and after doping.

		a (Å)	b (Å)	c (Å)	V (Å ³⁾
LiFePO ₄	Ours:	10.35	12.06	4.72	589.16
	Expt. [18]:	10.33	12.02	4.69	582.34
	Calc. [19]:	10.49	11.83	4.75	589.46
$LiFe_{1-1/8}Mn_{1/8}PO_4$	Ours:	10.36	12.1	4.73	593.48
$LiFe_{1-1/8}Co_{1/8}PO_4$	Ours:	10.32	12.04	4.72	587.62
$LiFe_{1\text{-}1/8}Nb_{1/8}PO_4$	Ours:	10.43	12.11	4.73	597.41
$LiFe_{1\text{-}1/8}Mo_{1/8}PO_4$	Ours:	10.39	12.11	4.73	595.09

of doped elements. It is worth noting that the changes in lattice constants are only reflected in the changes in the values of a and b, and the size of the c value remains basically unchanged.

The band structure of Mn, Co, Nb, Mo doped is shown in Fig. 3. After Mn doping, the energy gap of the majority-spin is reduced from $3.29\,\mathrm{eV}$ to $3.04\,\mathrm{eV}$, and the energy gap of minority gap is changed from $0.19\,\mathrm{eV}$ to $0.18\,\mathrm{eV}$. It can be seen that an overlap of the minority-spin bands after the doping of Co and Nb, indicating that it's a half metal. After Mo doping, the energy gap of the majority-spin is reduced from $3.29\,\mathrm{eV}$ to $2.53\,\mathrm{eV}$, and the energy gap of minority gap is changed from $0.19\,\mathrm{eV}$ to $0.13\,\mathrm{eV}$.

The orbital contribution of dopants (Mn, Co, Nb and Mo) in the vicinity of the Fermi level is more clearly indicated by plotting the partial densities of states. It is not difficult to find from Fig. 4 that the dorbitals of the dopants contributes to the density of states in the vicinity of and reduces the band gap. In addition, the more the number of the d band electrons of the dopants, the higher the peak near the Fermi level. The d-orbital of Nb goes through the Fermi level and causes the band gap of LiFePO₄ after doping to disappear. Therefore, the band gaps after doping of Mn, Co, Nb and Mo are decreased, which is beneficial to the transition of electrons and plays an important role in improving the electron mobility of LiFePO₄.

The defect formation energy E_f is an important concept used to characterize the degree of difficulty in the formation of a particular defect and the stability of its system. The smaller the energy is, the more stable it is. A formation energy greater than 0 indicates that the formation of the substance is endothermic, and less than 0 is exothermic. The formation energy of a defect or impurity M in charge state q is defined as [20]:

Download English Version:

https://daneshyari.com/en/article/10128600

Download Persian Version:

https://daneshyari.com/article/10128600

Daneshyari.com