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A B S T R A C T

The crack phase field model has been well established and validated for a variety of complex crack propagation
patterns within a homogeneous medium under either tensile or shear loading. However, relatively less attention
has been paid to crack propagation under combined tensile and shear loading or crack propagation within
composite materials made of two constituents with very different elastic moduli. In this work, we compare crack
propagation under such circumstances modelled by two representative formulations, anisotropic and hybrid
formulations, which have distinct stiffness degradation schemes upon crack propagation. We demonstrate that
the hybrid formulation is more adequate for modeling crack propagation problems under combined loading
because the residual stiffness of the damaged zone in the anisotropic formulation may lead to spurious crack
growth and altered load–displacement response.

1. Introduction

The initiation and propagation of cracks is one of the main failure
mechanisms of engineering materials. Hence, numerous studies have
been conducted to develop methods to accurately predict crack initia-
tion and propagation under various mechanical loading conditions to
prevent the catastrophic failure of engineering materials and systems.
The theoretical basis to predict crack evolution was first introduced by
Griffith [1] and Irwin [2]. They addressed the difficulty of dealing with
a singular stress field at the crack tip by introducing the concept of the
strain energy release, which showed good matching in numerous ex-
periments on the initiation of pre-existing crack growth. However,
crack nucleation, curvilinear crack paths, crack branching, or coales-
cence cannot be well accounted for.

In recent years, there has been an increasing interest in variational
approaches to brittle fracture, which is referred to as the crack phase
field model [3–7]. The phase field model approximates sharp crack
discontinuity with a continuous scalar parameter denoted by the crack
phase field. It has been shown that the solution of an approximated
crack surface, described by a smooth function, converges to the solu-
tions of sharp crack in the limit of regularization parameter equal to
zero [8–13]. The phase field approach has attracted significant atten-
tion as a powerful tool to simulate complex crack evolution, including
curvilinear crack paths, crack branching, or coalescence. Moreover, the

phase field model framework has been extended beyond the linear
elastic fracture regime to a wide range of fracture problems, such as
large strain problems [14,15], cohesive fractures [16], ductile fractures
[17], multi-physics [18–23], pore microstructures [24], and dynamic
effects [25,26].

Although extensive phase field modeling studies have been carried
out on the failure of homogeneous media, relatively less attention has
been paid to the failure of composite materials, which inherently in-
volves complex curvilinear crack propagation paths. In addition to ac-
curately predicting curvilinear crack paths through composites, it is
also crucial to obtain the entire stress–strain curve until complete
failure to evaluate the toughness modulus of composites [27–29].
However, phase field methodologies [18,19,30,31] based on the early
formulation by Miehe [6,7] selectively degrade the stiffness along the
direction of the maximum tensile strain upon crack growth. Hence, the
cracked region unphysically sustains any subsequent loading with dif-
ferent maximum tensile direction. For example, a straight crack grown
under tensile loading would withstand subsequent shear loading, as will
be shown later. When the Young’s moduli of two constituents in a
composite are similar to each other, such behavior does not play a
critical role in determining crack paths or predicting stress–strain
curves because the crack paths are similar to those of homogeneous
materials [31]. However, composites involving two constituents with
highly different elastic moduli, such as natural or nature-inspired
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composites, fail due to the propagation of strongly curved cracks that
are subject to highly varying combinations of tension and shear loading
along the crack paths. In such circumstances, crack paths as well as the
stress–strain curves are significantly affected by the aforementioned
unphysical load bearing capacity of the cracked regions. For example,
composite samples can sustain tensile loading although wavy cracks
propagate through the entire sample dimension, as will be shown in this
paper.

This paper compares the performance of two different formulations,
the early anisotropic formulation by Miehe [6,7] and a recent hybrid
formulation [32] for modeling crack propagation in homogeneous
materials under a sequence of different loading modes and for simu-
lating strongly curved crack propagation in composite materials. The
hybrid formulation, which was originally developed to reduce the
computational cost [32], it is demonstrated to not suffer from the
aforementioned unphysical load bearing capacity for the case studies
considered here.

The remainder of this paper is organized as follows. In Section 2, we
review fundamental equations of the phase field approach to quasi-
static brittle fracture and briefly introduce the numerical implementa-
tion scheme within the commercial software ABAQUS. For ease of
comparison with previous studies, we have adopted the notations of
Miehe et al. [6,7]. Section 3 provides few modeling examples on crack
propagation in homogeneous and heterogeneous media, which high-
lights the advantage of the hybrid formulation. In Section 4, we sum-
marize the paper and discuss directions for future research.

2. Methods

In this section, we briefly review diffusive crack representation in
the phase field framework, and we introduce three different formula-
tions, namely, isotropic, anisotropic, and hybrid schemes, that are
classified according to the strain energy split and stiffness degradation
scheme upon crack propagation. We then explain the numerical im-
plementation in the commercial finite element software ABAQUS.

2.1. Diffusive crack topology described by crack phase field

Consider a domain �⊂Ω D and its boundary ∂Ωdescribing a cracked
material in D dimensional space (see Fig. 1). Let Γ be a −D 1 dimen-
sional surface inside of domain Ω. Here, Γ represents the crack surface
within the material. As depicted in Fig. 1a, the topology of a sharp crack
can be described by the phase field scalar parameter ∈xd ( ) [0, 1] with
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which represents the fully broken state of the material for =d 1 and the
unbroken state of the material for =d 0 at a given point x . In the
regularized framework shown in Fig. 1b, the crack topology is ap-
proximated by scalar parameter xd ( ) having a unit value on the crack

surface Γ and fading away from that surface. The value of the phase
field xd ( ) can be determined by solving the following differential
equation:
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where ∇ d2 is the Laplacian of the phase field, n is the outward normal
on ∂Ω, and l is the regularization parameter that determines the width
of the regularized or diffusive crack topology. To elaborate the concept
of the regularization parameter l, a one-dimensional example of a dif-
fusive crack for various values of l is shown in Fig. 2b. In the limit of
→l 0, Fig. 2b shows that the diffusive crack topology converges to the

ideal sharp crack. Similarly, in two-dimensional and three-dimensional
cases, the diffusive crack topology also converges to a sharp crack for
vanishing value of l. Diffusive crack topology dΓ ( )l can be expressed as

∫= ∇d γ d d dVΓ ( ) ( , ) ,l Ω (3)

where ∇γ d d( , ) is the crack surface density function per unit volume of
the material, denoted as

∇ = + ∇γ d d
l
d l d( , ) 1

2 2
| | .2 2

(4)

In terms of ∇γ d d( , ) and the critical energy release rate gC, we can
approximate the surface energy W d( ) by volume integral as

∫ ∫= ≈ ∇W d g dA g γ d d dV( ) ( , ) .C CΓ Ω (5)

2.2. Strain energy and stiffness degradation of fracturing material

When the strain energy stored at a point of the material exceeds the
energy required to open a crack surface, fracture starts and it is ac-
companied by both strain energy and stiffness degradation. In other
words, the crack phase field xd ( ) is driven by the strain energy of the
material, and the completely fractured region with =xd ( ) 1 no longer
sustains the mechanical loading. To couple the crack phase field xd ( )
with displacement field u x( ), we define the strain energy of a material

uE d( , ) as

∫=u ε uE d ψ d dV( , ) ( ( ), ) ,
Ω (6)

where ε u( ) is the strain tensor, and ε uψ d( ( ), ) is the strain energy
stored per unit volume of the material. Here, the value of ψ depends not
only on the displacement u x( ) but also on the crack phase field xd ( ).
Now, we turn our attention to the constitutive assumptions concerning
the degradation of strain energy and stiffness that are directly related to
the driving force of crack propagation. Depending on the constitutive
assumptions regarding strain energy degradation, there are two major
formulations, namely, isotropic and anisotropic. More detailed

Fig. 1. Two-dimensional crack topology: (a) sharp crack model, (b) diffusive crack model described by phase field function xd ( ).
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