

Contents lists available at ScienceDirect

Vacuum

journal homepage: www.elsevier.com/locate/vacuum

Microstructures and mechanical properties of Ti—Cr—N/Al—Ti—Cr based coatings prepared by plasma nitriding 5083 Al alloys co-deposited with Ti—Cr films

Fanyong Zhang^{a,*}, Shu Yan^{b,**}, Fuxing Yin^a, Jining He^a

- ^a Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Research Institute for Energy Equipment Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300132, China
- ^b State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China

ARTICLE INFO

Keywords:
Ti—Cr film
Plasma nitriding
Titanium chromium nitride
Magnetron sputtering
Wear properties

ABSTRACT

A duplex treatment involving sputtering Ti—Cr film followed with plasma nitriding was employed to in-situ fabricate multilayer coatings on the surface of 5083 Al alloys. Ti—Cr films with different Cr addition were firstly sputtered on 5083 Al alloys by using magnetron sputtering, then nitrided at 460 °C under the N_2 — H_2 gas condition. Results showed that the as-obtained coatings were composed of the outside (Ti, Cr) $N_{0.3}$ or (Ti,Cr)N layer and the inside $Al_{18}(Ti,Cr)_2Mg_3$ layer. With increasing Cr content in the Ti—Cr film, (Ti,Cr)N phase was inclined to form in the outside layer and the $Al_{18}(Ti,Cr)_2Mg_3$ layer increased the thickness. Meanwhile, the surface hardness of multilayer coatings was enhanced and reached the maximum value of \sim 1020 HV. Specimens with outside (Ti,Cr)N1 layer showed better wear resistance than specimens with outside (Ti,Cr)N0.3 layer. The nitrided specimens exhibited mainly adhesive wear and abrasive wear accompanied with oxidation wear.

1. Introduction

Transition metal nitride coatings, such as TiN, CrN, TiAlN and TiCrN have been widely studied because of their high hardness, wear resistance and thermal stability [1–4]. However, these hard ceramics usually show brittle nature and large elastic properties mismatch with the substrates. As for single-layer ceramic coatings, cracks often generate from the surface and spread beneath the interface throughout the coatings, thus leading to the breakage of ceramic layer [5,6]. Various studies prove that multilayer architecture is the best approach to improve the fracture resistance of coatings in contrast to single-layer coatings [7–10]. The multilayer structure could act as a crack inhibitor, thus improve the tribological properties of coatings.

In recent studies, multilayer structure has drawn increasing attention in preparation of hard nitride coatings. Various kinds of ceramic/metal and ceramic/ceramic multilayer coatings including TiN/Ti, TiN/TiCN, TiAlN/CrN, CrN/MoN, CrN/DLC,etc. have been intensively studied [1,7,11–14]. The Ti layer has lower hardness than ceramics and could be identified as a solid lubricant during wear, leading to the reduced coefficient of friction [15]. In addition, the ceramic/ceramic multilayer coatings are often designed as superlattice structure,

resulting in the super high harness of multilayer coatings. Furthermore, the ternary nitride coating such as TiCrN(40 GPa), TiAlN(25–35 GPa), CrTiN(16 GPa), TiZrN (23–29 GPa) and CrAlN(\sim 17 GPa) are reported to show enhanced mechanical properties [16–19]. Especially, TiCrN attracts more attention due to high hardness and low friction coefficient (0.3) [4]. Thus, the mechanical properties of ceramic coatings could be further tailored by combination of multicomponent and multilayer architecture design.

Actually, these hard nitride coatings are usually deposited on the steel substrates by using magnetron sputtering. The coatings show ultrahigh hardness but have thin thickness of several microns. In addition, the coating/substrate interface remains mechanical bonding. The nitride based multilayer coatings might be not appropriate to deposited on the soft Al alloy substrates with ceramic interlayers. Actually, the soft Al alloy surfaces could be also strengthened by hard coatings by using plasma nitriding, physical chemical deposition, plasma electrolytic oxidation, ion implantation and so on [20–23]. However, these methods usually produce single ceramic coatings. Thus, it is necessary to explore a proper transition layer for the ceramic coating and the substrate. As reported in the previous studies [24–26], the nitride/aluminide multilayer structures were prepared by plasma nitriding pure

E-mail addresses: fany_zhang@163.com (F. Zhang), yanshu2504@163.com (S. Yan).

^{*} Corresponding author. Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin, 300130, PR China.

^{**} Corresponding author.

F. Zhang et al. Vacuum 157 (2018) 115–123

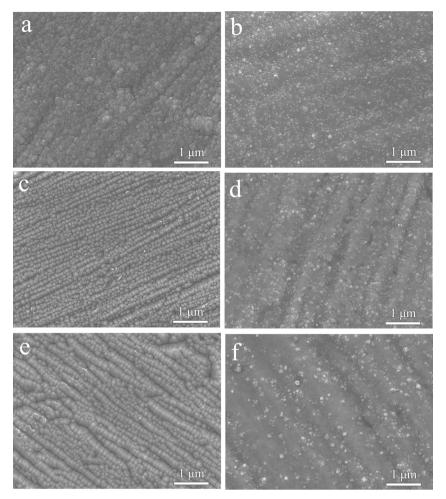


Fig. 1. SEM images of surface for 5083 Al alloys coated with Ti—Cr films before and after nitrided at 460 °C for 8 h: (a) D1 film, (b) D2 film, (c) D3 film, (d) P1 coating, (e) P2 coating and(d) P3 coating.

Table 1
The EDS results on the surfaces of Ti-Cr alloy films and the nitrided coatings.

Sample	Ti (At. %)	Cr (At. %)	Al (At. %)	N (At. %)	Fe (At. %)
D1 film D2 film D3 film P1 coating	87.27 72.49 59.48 73.28	10.27 25.56 39.74 8.63	2.56 1.95 0.78	- - - 16.58	- - - 1.51
P2 coating P3 coating	39.73 27.20	16.43 20.77	_	42.13 49.83	1.71 2.19

Ti coated Al alloys. ${\rm TiN_{0.30}}$ layer with nano grains and aluminide layer were in-situ fabricated due to the thermo-diffusion during plasma nitriding. Especially, the Ti–Al diffusion led to metallurgical bonding between the coating and substrate.

The ternary metal nitride TiCrN shows better mechanical properties than binary TiN or CrN, which is usually deposited by magnetron sputtering. In this study, different Ti–Cr alloy films were firstly deposited on 5083 Al alloy substrates. Then, plasma nitriding were conducted on the Ti–Cr coated 5083 Al alloys to simultaneously fabricate the Ti–Cr–N/Al–Ti–Cr based intermetallic layers. Microstructures and

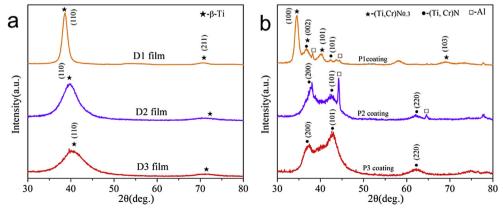


Fig. 2. XRD spectrums of 5083 Al alloys coated with Ti-Cr films: (a) before nitriding and (b) after plasma nitrided at 460 °C for 8 h.

Download English Version:

https://daneshyari.com/en/article/10128781

Download Persian Version:

https://daneshyari.com/article/10128781

<u>Daneshyari.com</u>