Accepted Manuscript

The influence of cooling rate on the microstructure and phase fraction of gas atomized NiAl₃ alloy powders during rapid solidification

Liming Sang, Yi Xu, Pengjun Fang, Honglin Zhang, Yuntao Cai, Xinyu Liu

PII: S0042-207X(18)30954-0

DOI: 10.1016/j.vacuum.2018.08.057

Reference: VAC 8204

To appear in: Vacuum

Received Date: 3 June 2018

Revised Date: 27 August 2018 Accepted Date: 28 August 2018

Please cite this article as: Sang L, Xu Y, Fang P, Zhang H, Cai Y, Liu X, The influence of cooling rate on the microstructure and phase fraction of gas atomized NiAl₃ alloy powders during rapid solidification, *Vacuum* (2018), doi: 10.1016/j.vacuum.2018.08.057.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The influence of cooling rate on the microstructure and phase fraction of gas atomized $NiAl_3$ alloy powders during rapid solidification

Liming Sang, Yi Xu*, Pengjun Fang, Honglin Zhang, Yuntao Cai, Xinyu Liu

School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China

*-Corresponding Author: xybwbj@swjtu.cn

Abstract: NiAl₃ alloy powders were produced by nitrogen gas atomization in this paper. The microstructure and phase compositions of different particle size powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron backscattered diffraction (EBSD). The atomized powders are composed of Ni₂Al₃, NiAl₃ and Al-eutectic phases, and three main types of solidification microstructures were identified: dendrites, refined dendrites, and compounds. Phase fraction of three representative particles with diameter of 60, 140 and 220 μm were measured. Moreover, the Newtonian heat transfer formulation coupled with the classical heterogeneous nucleation was used for analyzing the influence of heat transfer coefficient and cooling rate on the thermal history of droplets. Therefore, this work highlights the experimental results matched well with the theoretical calculation and guides the further production of high NiAl₃ phase Raney nickel catalytic powders. **Keywords:** NiAl₃ alloy powder, gas atomization, solidification microstructure, phase

1. Introduction

fraction, Raney nickel catalyst

Raney nickel catalysts are wildly applied to promote hydrogenation or dehydrogenation reactions since it was discovered ^[1], for instance in hydrogen fuel cells ^[2,3]. Traditionally, Raney nickel catalysts are produced by casting ingots of a 50-50 wt.% mixture of Ni and Al that are subsequently crushed into coarse powders so that the catalysts can be activated by leaching in a concentrated solution of alkali

Download English Version:

https://daneshyari.com/en/article/10128823

Download Persian Version:

https://daneshyari.com/article/10128823

Daneshyari.com