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a b s t r a c t

Fault detection and diagnosis (FDD) provides safety alarms and diagnostic functions for a nuclear power
plant (NPP), which comprises large and complex systems. Here, a technical framework based on a
Bayesian network (BN) for FDD is introduced because of its advantages of easy visualization, expression
of parameter uncertainties, and ability to perform diagnosis with incomplete data. However, a BN raises a
new problem when it is applied to NPPs; i.e., how to cope with parameter or node information from mul-
tiple sensors. Sensor data must be consolidated because creating a single node for each sensor in the net-
work would lead to information overload. This paper proposes a possible solution to this issue and then
constructs an FDD system framework with a BN as the backbone. Within this framework, principal com-
ponent analysis is used to remove information from malfunctioning sensors, and fuzzy theory and data
fusion are combined to further improve data accuracy and combine data from multiple sensors into one
node. On this basis, a BN inference junction tree algorithm is used in FDD because it can deal with incom-
plete data. A BN model for a pressurized water reactor is created to validate the method framework.
Simulation experiments indicate the suitability of the proposed method for online FDD in NPPs using
multi-sensor information. It is thus concluded that the proposed method is a feasible scheme for the
FDD of NPPs.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A nuclear power plant (NPP) is a modern industrial plant com-
prising large and complex systems. A typical NPP control room is
equipped with about 2000 alarms (Mo et al., 2007). A fault occur-
ring in an NPP may therefore trigger numerous alarm signals, mak-
ing it difficult for operators to determine the current state of the
NPP (Zhao et al., 2015). Current research focuses on how to
improve the reliability of operation in complex industrial systems,
such as NPPs (Liu and Peng et al., 2013), chemical refineries (Peng
et al., 2014), chiller plants (Wang et al., 2017), and other systems
(Chung and Bien, 1994). Fault detection and diagnosis (FDD) is
one technology that may promote reliability because it provides
safety alarms and diagnostic functions for NPPs and thus helps
operators rapidly discover the causes of accidents and gives oper-
ators real-time operation guidance (Ma and Jiang, 2015). In this
way, FDD can prevent further deterioration during an accident
and improve the reliability, safety, and economics of an NPP.
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Abbreviations: ACP, AC power; APPRCS, Average primary pressure in a reactor
coolant system; BN, Bayesian network; CPTs, Conditional probability tables; DST,
Dempster–Shafer theory; FCL (1), Flow of coolant in loop 1; FCL (2), Flow of coolant
in loop 2; FCL (3), Flow of coolant in loop 3; FDD, Fault detection and diagnosis; JT,
Junction tree; LOCA, Loss of coolant accident; LOFW, Loss of feed water; MSLB, Main
steam line break; NPP, Nuclear power plant; PC, Pressure of the containment; PCA,
Principal component analysis; PCL, Pressure of second-loop; PCLL (1), Pressure of
cold leg in loop 1; PCLL (2), Pressure of cold leg in loop 2; PCLL (3), Pressure of cold
leg in loop 3; PPZ, Pressure of pressurizer; PSG (1), Pressure in steam generator 1;
PSG (2), Pressure in steam generator 2; PSG (3), Pressure in steam generator 3; PWL,
Pit water level; RC, Radioactivity of the containment; RSG (1), Radioactivity in
steam generator 1; RSG (2), Radioactivity in steam generator 2; RSG (3), Radioac-
tivity in steam generator 3; SBO, Station blackout; SGTR, Steam generator tube
rupture; SPC, Sub-cooling of primary coolant; SVI, Sensor validity index; TC,
Temperature of the containment; TCLL (1), Temperature of the cold leg in loop 1;
TCLL (2), Temperature of the cold leg in loop 2; TCLL (3), Temperature of the cold leg
in loop 3; WLPZ, Water level in the pressurizer; WLSG (1), Water level in steam
generator 1; WLSG (2), Water level in steam generator 2; WLSG (3), Water level in
steam generator 3.
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1.1. Sensor condition monitoring

The first step of FDD is to obtain multi-sensor data from the dig-
ital and control system of the NPP. To ensure the accuracy and reli-
ability of data for FDD, most studies employ sensor condition
monitoring for safety, economics, and accuracy. In terms of safety,
sensor condition monitoring identifies malfunctioning sensors,
which improves the reliability and safety of instruments and the
control system. In terms of economics, the quick location of faulty
sensors provides guidance for operators to shorten the mainte-
nance cycle. In terms of accuracy, sensor condition monitoring
improves the reliability of data that have a critical effect on the
accuracy of FDD (Lu and Upadhyaya, 2005). It is therefore neces-
sary to carry out sensor condition monitoring.

Data-driven methods that dig into data have been studied for
the monitoring of the sensor condition (Li et al., 2017). Principal
component analysis (PCA), which was proposed by Pearson
(1901), transforms high-dimensional information into low-
dimensional information. Elnokity et al. (2012) used an optimized
neural network for sensor condition monitoring. A support vector
machine was used to predict the critical heat flow (Cai, 2012)
and monitor the status of an NPP to improve economics (Liu and
Seraoui et al., 2013). Artificial immunity and distributed condition
monitoring were proposed to monitor an NPP water supply system
(Wang et al., 2016). Self-associative kernel regression was used for
the calibration of sensors in an NPP (Hines and Garvey, 2007). Kim
et al. (2015) used a Gaussian distribution to evaluate the state of a
plant.

1.2. Fault diagnosis

As an artificial intelligence method, FDD obtains important sig-
nals from a large quantity of data and judges the current state of a
system (Liu et al., 2014). FDD techniques can be divided into data-
driven, signal-based, and model-based methods. These methods
are schematically shown in Fig. 1 (Ma and Jiang, 2011). Data-
driven FDD mainly relies on numerous data to establish relation-

ships between parameters and faults taking various approaches,
such as using a neural network (Amal et al., 2011; Mo et al.,
2007), conducting PCA (Gajjar et al., 2017), conducting qualitative
trend analysis (Maurya et al., 2005), and other approaches
(Žarković and Stojković, 2017). Signal-based methods operate in
the time domain and employ techniques such as wavelet analysis,
time–frequency analysis, and spectral analysis (Ma and Jiang,
2011). There are two main approaches for model-based FDD. One
is based on the use of expert knowledge; e.g., expert systems
(Kramer and Palowitch, 1987). The other is based on graph theory;
i.e., the model graphically displays relationships between the var-
ious parameters and faults, as in a Bayesian network (BN) (Kang
and Golay, 1999), first-principle model (Pantelides and Renfro,
2013), signed directed graph (Liu et al., 2016), and dynamic uncer-
tain causality graph (Zhou and Zhang, 2017).

Table 1 compares fault diagnosis methods. In the table, ‘‘
p
”

indicates that the method has the characteristic, ‘‘�” indicates that
the method does not have the characteristic, and ‘‘—” indicates that
the method does have the characteristic but there is room for
improvement (Liu and Liu et al., 2013; Liu et al., 2018). It is seen
from the comparison that the BN has advantages over most other
methods.

1.3. Proposed hybrid intelligent framework for fault diagnosis

Although many FDD methods have been used for NPPs, only a
few studies have focused on FDD using multi-source sensor nodes
and incomplete data. These node and data characteristics intro-
duce three critical problems: (1) in a real NPP, a parameter may
be measured by multiple sensors, and it is therefore important
for FDD to judge which sensor data are accurate; (2) the consider-
ation of multi-source sensor nodes results in there being too many
input nodes in the model, which can easily lead to information
overload; and (3) in a real NPP, it is common for there to be incom-
plete data because of sensor hardware failure or data acquisition
system malfunction (Liu et al., 2015). When there is a severe acci-
dent or a sensor malfunction in an NPP, the resulting incomplete
data challenge the availability and effectiveness of FDD.

This paper proposes a hybrid artificial intelligence approach
that addresses the three critical problems described above. In
terms of the first problem, PCA has advantages in terms of feature
extraction and data compression. In terms of the second problem,
fuzzy logic and data fusion methods are proposed to consolidate
the multi-source sensor data into one input node and thus avoid
information overload. In terms of the third problem, a BN is used
to realize FDD when data are incomplete.

The following architecture is proposed according to the
approach described above. First, a PCA model is trained with
multi-source sensor data and then used to eliminate data from
malfunctioning sensors. Second, valid sensor data are processed
with fuzzy theory equations, which transforms parameters into
probably events. Third, the event probabilities are the input for
data fusion, which converts multiple data points into one data
point for each parameter. Fuzzy theory and data fusion are used
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Fig. 1. Classification of common fault diagnosis methods.

Table 1
Comparison of fault diagnosis methods.

Characteristic BN Neural
network

PCA Signed directed
graph

Expert
system

Robustness
p

– – � �
Explanation

p � � p p
Uncertainty information

p p p
– –

Rapid diagnosis
p p p p p

Accuracy in general
p p p p p

Resolution –
p p � �
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