Annals of Nuclear Energy 122 (2018) 366-377

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier.com/locate/anucene

Solving the six-field governing equations for a system code

Glenn A. Roth^{a,*}, George Mesina^b, Fatih Aydogan^a

^a University of Idaho, Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401, United States ^b Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83401, United States

ARTICLE INFO

ABSTRACT

Article history: Received 14 June 2018 Received in revised form 29 August 2018 Accepted 4 September 2018

Keywords: Two-phase flow Multi-field System code The coolant systems of nuclear power plants are modeled with system codes. The results of the system code calculations are necessary not only to develop new power plants, but also in the licensing and analysis of existing power plants. Therefore, it is essential that system codes produce realistic results.

Simple models using a single fluid field have been used in initial versions of many system codes. In recent years, more fluid fields have been used for best-estimate code results to improve two-phase flow predictions of the system codes. This paper introduces the numerical equations and solution methods for a next-generation system code that uses 6 fluid fields. It demonstrates the discretization of the mass, momentum, and energy governing equations and the application of matrix solutions that are necessary to implement the 6-field model in a software code.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The first nuclear system codes for reactor analysis were limited to very basic models that were able to model only a single fluid field (Mesina, 2016). A single fluid field does not allow for very detailed modeling of reactor transients. Developments in the RELAP code in the late 1960's and early 1970's included the addition of a second field to allow for calculation of 2-phase transients, along with the accompanying boiling heat transfer models (Mesina, 2016). The two-field model has been used by many system codes since that time (Spore et al., 2001; U.S. Nuclear Regulatory Commission, 2008).

More recent developments in nuclear system codes have included updates to the number of fields modeled by the governing equations. The addition of a droplet field helps to model the transition to superheat conditions, as well as the complex heat transfer of a reflood condition. The W-COBRA/TRAC-TF2 code now includes a droplet field that is available in the 3D vessel component (Frepoli et al., 2010), though there is a single energy equation for the liquid film and the droplet field, which implies that both fields share the same temperature. The TRACE code will soon include a droplet field to improve reflood modeling (U.S. Nuclear Regulatory Commission, 2008).

The addition of a droplet field improves the results for reflood conditions. The NRC is also considering development of a bubble field for the TRACE code for further transient model improvements (Bajorek, 2008; Shack, 2008). Specialized TRACE versions have been developed that include bubble fields (Talley et al., 2013).

Another thermal-hydraulic analysis code called Safety and Performance Analysis Code for Nuclear Power Plant (SPACE) is being developed by Korean nuclear industry (Ha et al., 2009; Kwak et al., 2014). The SPACE code has governing equations for twofluid, three-field flows in 1D or 3D geometries. Models that calculate the rate of entrainment and de-entrainment of droplets were developed and included in the SPACE code as described in Schimpf et al. (2018).

Additional fields have been included in the RELAP code by merging the COBRA-TF code with RELAP5 (Lee et al., 2017). The MARS code is based on RELAP5 and COBRA-TF (Jeong et al., 2016). The COBRA-TF code includes the capability of calculating two fluids and three fields, as well as subchannel calculations. A variant of COBRA-TF (COBRA-IE) has also been developed that is a general purpose system analysis code. The COBRA-IE code includes models for three-field counter-current flow (Aumiller et al., 2015).

Increasing the number of fields improves the results for transient reactor analysis. Kunz et al. (1998) developed a multi-field two-phase model and showed that increasing the number of fields improves the results for transient two-phase analysis. Roth and Aydogan showed (Roth and Aydogan, 2015) a set of governing equations for a six-field model. The equations balance mass, momentum, and energy for a continuous liquid and continuous vapor field, as well as large and small fields of bubbles and droplets. Increasing the fidelity of the fluid model by increasing the

Corresponding author.
 E-mail addresses: roth1581@vandals.uidaho.edu (G.A. Roth), george.mesina@inl.
 gov (G. Mesina), fatih@uidaho.edu (F. Aydogan).

367

Nomenclature

Greek		n
α	Volume fraction	Р
α_e	Volume fraction of entrained droplets	P
χ	Turbulent kinetic energy dissipation rate per unit mix-	P P
F	Wall vapor generation/condensation flag. $\epsilon = 1$ for boil-	Ç
0	ing in the boundary layer, $\epsilon = -1$ for condensation.	Q
η_e	Grid efficiency factor	r
1	Volumetric mass exchange rate $\left(\frac{NS}{m^3 \cdot s}\right)$	R
л Ц	Dynamic viscosity	R
ρ	Density	S
σ	Surface Tension	S
Ş	Pipe diameter-dependent coefficient	S
ζ	Dioplet turbulent unfusivity	Т
English		t
Δt	Change in time from one timestep to the next (timestep	T
	size)	V
ΔX	Cell height	ĩ
A	Flow area	ı
A	Interfacial area	V
A_c	Area of the channel	V
A_f	Flow area of pipe	v
A _g A _{i c}	Interfacial area concentration for small hubbles	V
$A_{i,d}$	Droplet interfacial area concentration	V
B_x	Body forces (gravity)	V
C	Coefficient of virutal mass (from momentum equations)	V
$C_{D,k}$	entrainment	
C_d	Empirical constant – 4.8	x
$C_{RC,k}$	Proportionality constant	~
C_{RC2}	Proportionality constant	3
$C_{RC}^{(2)}$	Empirical coefficient for large bubble coalescence	2
$C_{RC}^{(\kappa)}$	Empirical coefficient for bubble coalescence	3
C_{SO}	Shear off coefficient -3.8×10^{-5}	4
C_{TI}	Adjustable coefficient – 0.03	5 6
$C_{WE}^{(n)}$	Experimental determined coefficient for wake entrain-	b
$C_{\mu\nu}^{(k)}$	Wake entrainment coefficient for bubble coalescence	d
D^{WE}	Diameter	i
D_{hy}	Hydraulic Diameter	k k
D _I	Diameter of droplet impacting spacer grid	L
Do DISS	Energy dissipation term	l
FW	Wall drag coefficient in energy dissipation and momen-	n
6	tum equations $\left(\frac{1}{sec}\right)$	T T
G	Gap of the flow channel	t
s h'	Phasic specific enthalpy for wall (thermal boundary	N
	layer) interface mass transfer	
h^*	Phasic specific enthalpy (for bulk interface mass	S
и.	transfer) Heat transfer coefficient from field k to field m per unit	
11 _{k,m}	volume	*
$H_{m,k}$	Heat transfer coefficient from field m to field k per unit	
111.000	volume	X
HLUSS	vynamic now loss in liquid phase resulting from abrupt	~
k'_A	Empirical Constant	п
k _D	Local droplet deposition velocity	п

m_E Mass of droplets entering the grid P System pressure P_H Heated Perimeter P_p Perimeter of pipe P_w Wetted Perimeter Q Volumetric heat addition rate $\left(\frac{W}{m^3}\right)$ Q_G Gas volumetric flow r Radius R_c^* Dimensionless radius of curvature for cap bubble $R_{SO,c}$ Critical radius of curvature for bubble shear off R_c Radius of curvature S Ratio of drop velocity to gas velocity S Source term s_k Liquid or vapor multiplier. Set to 1 for vapor phases an -1 for liquid phases T Temperature t Time T^s Saturation temperature U Internal energy V Volume of the hydro cell v Velocity V_{cell} Volume of computational cell V_c Critical vapor velocity V_{cell} Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LF} Mass flow of entrained drops W_{LF} Mass flow liquid film W_{LF} Mass flow liquid film $W_{c,TI,k}$ Critical Weber number for turburlent breakup of sma bubbles - 6.5 x Direction of flow	L _{cell}	Length of computational cell
PSystem pressure P_H Heated Perimeter P_p Perimeter of pipe P_w Wetted PerimeterQVolumetric heat addition rate $\left(\frac{W}{m^3}\right)$ Q_G Gas volumetric flow r Radius R_c^* Dimensionless radius of curvature for cap bubble $R_{co.c}$ Critical radius of curvature for bubble shear off R_c Radius of curvature S Ratio of drop velocity to gas velocity S Source term S_k Liquid or vapor multiplier. Set to 1 for vapor phases an -1 for liquid phases T Temperature t T Temperature U Internal energy V V Volume of the hydro cell v v Velocity $v_{4,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c V_c Critical viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LF} Mass flow of entrained drops W_{LFC} Critical mass flow liquid film W_{LF} W_{LF} Mass flow liquid film $W_{e_{c,TL,k}$ Critical Weber number for turburlent breakup of smale bubbles - 6.5 x Direction of flow	m_E	Mass of droplets entering the grid
P_H Heated Perimeter P_p Perimeter of pipe P_w Wetted Perimeter Q Volumetric heat addition rate $\left(\frac{W}{m^3}\right)$ Q_G Gas volumetric flow r Radius R_c^* Dimensionless radius of curvature for cap bubble $Rso.c$ Critical radius of curvature for bubble shear off Rc Radius of curvature S Ratio of drop velocity to gas velocity S Source term s_k Liquid or vapor multiplier. Set to 1 for vapor phases and -1 for liquid phases T Temperature t Time T^s Saturation temperature U Internal energy V Volume of the hydro cell v Velocity $v_{a,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_{dl} Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LF} Mass flow of entrained drops W_{LF} Mass flow liquid film $We_{c,TI,k}$ Critical Weber number for turburlent breakup of smather w Direction of flow	P	System pressure
P_p Perimeter of pipe P_w Wetted Perimeter Q Volumetric heat addition rate $\left(\frac{W}{m^3}\right)$ Q_G Gas volumetric flow r Radius R_c^* Dimensionless radius of curvature for cap bubble Rso,c Critical radius of curvature for bubble shear off Rc Radius of curvature S Ratio of drop velocity to gas velocity S Source term s_k Liquid or vapor multiplier. Set to 1 for vapor phases and -1 for liquid phases T Temperature t Time T^s Saturation temperature U Internal energy V Volume of the hydro cell v Velocity $v_{a,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_d_d Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LF} Mass flow of entrained drops W_{LF} Mass flow liquid film $W_{c,TI,k}$ Critical Weber number for turburlent breakup of smature w Direction of flow	P _H	Heated Perimeter
P_w Wetted Perimeter Q Volumetric heat addition rate $\left(\frac{W}{m^3}\right)$ Q_G Gas volumetric flow r Radius R_c^* Dimensionless radius of curvature for cap bubble $R_{S0,c}$ Critical radius of curvature for bubble shear off R_c Radius of curvature S Ratio of drop velocity to gas velocity S Source term s_k Liquid or vapor multiplier. Set to 1 for vapor phases an -1 for liquid phases T Temperature t Time T^s Saturation temperature U Internal energy V Volume of the hydro cell v Velocity $v_{a,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_d Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LF} Mass flow of entrained drops W_{LF} Mass flow liquid film $We_{c,Tl,k}$ Critical Weber number for turburlent breakup of sma bubbles - 6.5 x Direction of flow	P_n	Perimeter of pipe
QVolumetric heat addition rate $\left(\frac{W}{m^3}\right)$ Q_G Gas volumetric flow r Radius R_c^* Dimensionless radius of curvature for cap bubble $R_{S0,c}$ Critical radius of curvature for bubble shear off R_c Radius of curvature S Ratio of drop velocity to gas velocity S Source term s_k Liquid or vapor multiplier. Set to 1 for vapor phases an -1 for liquid phases T Temperature t Time T^s Saturation temperature U Internal energy V Volume of the hydro cell v Velocity $v_{a,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_{dl} Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LF} Mass flow of entrained drops W_{LF} Mass flow liquid film $W_{e_{c,Tl,k}}$ Critical Weber number for turburlent breakup of sma bubbles - 6.5 x Direction of flow	P _w	Wetted Perimeter
Q_G Gas volumetric flow(m^{r}) r Radius R_c^* Dimensionless radius of curvature for cap bubble $R_{S0,c}$ Critical radius of curvature for bubble shear off R_c Radius of curvature S Ratio of drop velocity to gas velocity S Source term s_k Liquid or vapor multiplier. Set to 1 for vapor phases an -1 for liquid phases T Temperature t Time T^s Saturation temperature U Internal energy V Volume of the hydro cell v Velocity $v_{a,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_d Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LF} Mass flow of entrained drops W_{LF} Mass flow liquid film $W_{c_c,Tl,k}$ Critical Weber number for turburlent breakup of sma bubbles – 6.5 x Direction of flow	Q	Volumetric heat addition rate $\left(\frac{W}{m^3}\right)$
rRadius R_c^* Dimensionless radius of curvature for cap bubble $R_{S0,c}$ Critical radius of curvature for bubble shear off R_c Radius of curvature S Ratio of drop velocity to gas velocity S Source term s_k Liquid or vapor multiplier. Set to 1 for vapor phases and -1 for liquid phases T Temperature t Time T^s Saturation temperature U Internal energy V Volume of the hydro cell v Velocity $v_{a,crit}$ Critical vapor velocity V_cell Volume of computational cell V_c Critical volume V_d Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LF} Mass flow of entrained drops W_{LF} Mass flow liquid film $W_{c,TI,k}$ Critical Weber number for turburlent breakup of sma bubbles – 6.5 x Direction of flow	Q_G	Gas volumetric flow
R_c^* Dimensionless radius of curvature for cap bubble $R_{S0,c}$ Critical radius of curvature Rc Radius of curvature S Ratio of drop velocity to gas velocity S Source term s_k Liquid or vapor multiplier. Set to 1 for vapor phases and -1 for liquid phases T Temperature t Time T^s Saturation temperature U Internal energy V Volume of the hydro cell v Velocity $v_{c,crit}$ Critical vapor velocity V_c Critical volume V_dl Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LF} Mass flow of entrained drops W_{LF} Mass flow liquid film $We_{c,TI,k}$ Critical Weber number for turburlent breakup of sma bubbles – 6.5 x Direction of flow	r	Radius
$R_{S0,c}$ Critical radius of curvature for bubble shear off Rc Radius of curvature S Ratio of drop velocity to gas velocity S Source term s_k Liquid or vapor multiplier. Set to 1 for vapor phases and -1 for liquid phases T Temperature t Time T^s Saturation temperature U Internal energy V Volume of the hydro cell v Velocity $v_{4,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_dl Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LF} Mass flow of entrained drops W_{LF} Mass flow liquid film W_{LF} Mass flow liquid film $We_{c,TI,k}$ Critical Weber number for turburlent breakup of sma bubbles – 6.5 x Direction of flow	R_c^*	Dimensionless radius of curvature for cap bubble
RcRadius of curvatureSRatio of drop velocity to gas velocitySSource term s_k Liquid or vapor multiplier. Set to 1 for vapor phases and -1 for liquid phasesTTemperaturetTime T^s Saturation temperatureUInternal energyVVolume of the hydro cellvVelocity v_{cell} Volume of computational cell V_cell Volume of computational cell V_c Critical volume V_d_l Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k, where k is 1 or 4. W_{LEC} Critical mass flow liquid film W_{LFC} Critical Weber number for turburlent breakup of smature W_{LF} Mass flow of flow	R _{SO.c}	Critical radius of curvature for bubble shear off
SRatio of drop velocity to gas velocitySSource term s_k Liquid or vapor multiplier. Set to 1 for vapor phases and -1 for liquid phasesTTemperaturetTime T^s Saturation temperatureUInternal energyVVolume of the hydro cell v Velocity $v_{4,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_dl Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LFC} Critical mass flow liquid film W_{LF} Mass flow ignuid film $W_{e_{c,TI,k}}$ Critical Weber number for turburlent breakup of smale bubbles - 6.5 x Direction of flow	Rc	Radius of curvature
SSource term s_k Liquid or vapor multiplier. Set to 1 for vapor phases and -1 for liquid phasesTTemperaturetTime T^s Saturation temperatureUInternal energyVVolume of the hydro cell v Velocity $v_{4,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_{dl} Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LF} Mass flow of entrained drops W_{LFC} Critical weber number for turburlent breakup of sma bubbles - 6.5 x Direction of flow	S	Ratio of drop velocity to gas velocity
s_k Liquid or vapor multiplier. Set to 1 for vapor phases and -1 for liquid phases T Temperature t Time T^s Saturation temperature U Internal energy V Volume of the hydro cell v Velocity $v_{4,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_{dl} Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LF} Mass flow of entrained drops W_{LFC} Critical Weber number for turburlent breakup of sma bubbles - 6.5 x Direction of flow	S	Source term
-1 for liquid phasesTTemperaturetTime T^s Saturation temperatureUInternal energyVVolume of the hydro cellvVelocity $v_{4,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_{dl} Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LE} Mass flow of entrained drops W_{LFC} Critical mass flow liquid film W_{LF} Mass flow liquid film W_{LF} Critical Weber number for turburlent breakup of sma bubbles - 6.5xDirection of flow	s _k	Liquid or vapor multiplier. Set to 1 for vapor phases and
TTemperaturetTime T^s Saturation temperatureUInternal energyVVolume of the hydro cell v Velocity $v_{4,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_{dl} Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LE} Mass flow of entrained drops W_{LFC} Critical mass flow liquid film W_{LF} Mass flow liquid film W_{LF} Critical Weber number for turburlent breakup of sma bubbles - 6.5 x Direction of flow		-1 for liquid phases
tTime T^s Saturation temperatureUInternal energyVVolume of the hydro cellvVelocity $v_{4,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_{dl} Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LE} Mass flow of entrained drops W_{LFC} Critical mass flow liquid film W_{LF} Mass flow liquid film W_{LF} Critical Weber number for turburlent breakup of sma bubbles - 6.5xDirection of flow	Т	Temperature
T^s Saturation temperature U Internal energy V Volume of the hydro cell v Velocity $v_{4,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_{dl} Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LE} Mass flow of entrained drops W_{LFC} Critical mass flow liquid film W_{LF} Mass flow liquid film W_{LF} Critical Weber number for turburlent breakup of sma bubbles - 6.5 x Direction of flow	t	Time
UInternal energyVVolume of the hydro cell v Velocity $v_{4,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_{dl} Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LF} Mass flow of entrained drops W_{LFC} Critical mass flow liquid film W_{LF} Mass flow liquid film $W_{c,TI,k}$ Critical Weber number for turburlent breakup of sma bubbles - 6.5 x Direction of flow	T^{s}	Saturation temperature
VVolume of the hydro cell v Velocity $v_{4,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_{dl} Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LF} Mass flow of entrained drops W_{LFC} Critical mass flow liquid film W_{LF} Mass flow liquid film $W_{e_{c,TI,k}}$ Critical Weber number for turburlent breakup of sma bubbles - 6.5 x Direction of flow	U	Internal energy
v Velocity $v_{4,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_d Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LF} Mass flow of entrained drops W_{LFC} Critical mass flow liquid film W_{LF} Mass flow liquid film $W_{e_{c,TI,k}}$ Critical Weber number for turburlent breakup of sma bubbles - 6.5 x Direction of flow	V	Volume of the hydro cell
$v_{4,crit}$ Critical vapor velocity V_{cell} Volume of computational cell V_c Critical volume V_d Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LE} Mass flow of entrained drops W_{LFC} Critical mass flow liquid film W_{LF} Mass flow liquid film W_{LF} Critical Weber number for turburlent breakup of sma bubbles - 6.5 x Direction of flow	v	Velocity
V_{cell} Volume of computational cell V_c Critical volume V_d Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LE} Mass flow of entrained drops W_{LFC} Critical mass flow liquid film W_{LF} Mass flow liquid film W_{LF} Critical Weber number for turburlent breakup of sma bubbles - 6.5 x Direction of flow	$v_{4,crit}$	Critical vapor velocity
V_c Critical volume V_{dl} Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LE} Mass flow of entrained drops W_{LFC} Critical mass flow liquid film W_{LF} Mass flow liquid film W_{LF} Critical Weber number for turburlent breakup of sma bubbles - 6.5 x Direction of flow	V _{cell}	Volume of computational cell
V_{dl} Velocity of drop impacting spacer grid VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LE} Mass flow of entrained drops W_{LFC} Critical mass flow liquid film W_{LF} Mass flow liquid film W_{LF} Critical Weber number for turburlent breakup of sma bubbles - 6.5 x Direction of flow	Vc	Critical volume
VIS_k Artificial viscosity term for field k , where k is 1 or 4. W Longer width of flow duct W_{LE} Mass flow of entrained drops W_{LFC} Critical mass flow liquid film W_{LF} Mass flow liquid film W_{LF} Mass flow liquid film $W_{c,TI,k}$ Critical Weber number for turburlent breakup of sma bubbles - 6.5 x Direction of flow	V _{dI}	Velocity of drop impacting spacer grid
WLonger width of flow duct W_{LE} Mass flow of entrained drops W_{LFC} Critical mass flow liquid film W_{LF} Mass flow liquid film $We_{c,TI,k}$ Critical Weber number for turburlent breakup of sma bubbles - 6.5xDirection of flow	VIS_k	Artificial viscosity term for field k, where k is 1 or 4.
WLE Mass flow of entrained drops WLFC Critical mass flow liquid film WLF Mass flow liquid film Wec.TI.k Critical Weber number for turburlent breakup of sma bubbles – 6.5 x Direction of flow	W	Longer width of flow duct
 W_{LFC} Critical mass flow liquid film W_{LF} Mass flow liquid film We_{c,TL,k} Critical Weber number for turburlent breakup of sma bubbles – 6.5 x Direction of flow 	W_{LE}	Mass flow of entrained drops
WLFMass flow liquid filmWec.TI.kCritical Weber number for turburlent breakup of sma bubbles - 6.5xDirection of flow	W_{LFC}	Critical mass flow liquid film
$We_{c,\Pi,k}$ Critical Weber number for turburlent breakup of sma bubbles – 6.5xDirection of flow	W_{LF}	Mass flow liquid film
bubbles – 6.5 x Direction of flow	$We_{c,TI,k}$	Critical Weber number for turburlent breakup of small
x Direction of flow		bubbles – 6.5
	x	Direction of flow

Subscripts

Subscrip		
1	Continuous liquid field	
2	Large Droplet	
3	Small Droplet	
4	Continuous vapor field	
5	Large Bubble	
6	Small Bubble	
b	Bubble value (field numbers 5 or 6)	
d	Droplet value (field numbers 2 or 3)	
i	Field interface	
Κ	Center of volume upstream of calculation volume	
k	Field subscript – any of the 6 fields	
L	Center of current calculational volume	
1	Leading (bubble field)	
тах	Maximum value	
rel	Relative value	
Т	Trailing (bubble field)	
t	Total value	
w	Value at the wall, wall	
Superscripts		
/ /	Indication of phasic specific enthalpy for heat transfer in	
	the thermal boundary layer near the wall	
*	Indication of phasic specific enthalpy for bulk heat	
	transfer	
Ż	"Donored" value – volume weighted avereage at a junc-	
	tion from adjacent volumes	
\sim	Provisional value	
п	"Old" time value	
n + 1	"New" time value	

Download English Version:

https://daneshyari.com/en/article/10128893

Download Persian Version:

https://daneshyari.com/article/10128893

Daneshyari.com