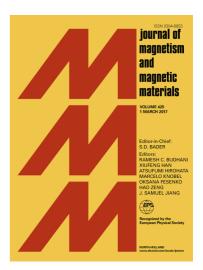
Accepted Manuscript

Changes in structural, magnetic and magnetocaloric properties due to homogenization annealing in $Ni_{54}Mn_{19}Ga_{27}$

Atakan Tekgül, Kağan Şarlar, İlker Kü ç ük


PII: S0304-8853(18)30893-X

DOI: https://doi.org/10.1016/j.jmmm.2018.08.056

Reference: MAGMA 64253

To appear in: Journal of Magnetism and Magnetic Materials

Received Date: 25 March 2018 Revised Date: 31 July 2018 Accepted Date: 22 August 2018

Please cite this article as: A. Tekgül, K. Şarlar, I. Küçük, Changes in structural, magnetic and magnetocaloric properties due to homogenization annealing in Ni₅₄Mn₁₉Ga₂₇, *Journal of Magnetism and Magnetic Materials* (2018), doi: https://doi.org/10.1016/j.jmmm.2018.08.056

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Changes in structural, magnetic and magnetocaloric properties due to homogenization annealing in ${\rm Ni_{54}Mn_{19}Ga_{27}}$

Atakan Tekgül^{a,b,*}, Kağan Şarlar^a, İlker Küçük^a

 ^a Uludag University, Physics Department, Faculty of Arts and Sciences, TR-16059 Bursa, Turkey
^b Akdeniz University, Physics Department, TR-07058, Antalya, Turkey

Abstract

Structural and magnetic transformations in the Heusler system Ni₅₄Mn₁₉Ga₂₇ due to different annealing time are studied by X-ray diffraction (XRD) and magnetization measurements. The developing of inter-martensitic and second order phase transition are investigated as a function of the annealing time. Analysis of the XRD data reveals that the austenite state has an $L2_1$ structure, whereas the structures of the martensite is a 14M (tetragonal) and the alloy crystallizes in the mixture phase at room temperature. In magnetic measurements, these martensite and austenite phases are ferromagnetic and due to ferromagnetic exchange caused different Curie temperatures for the austenitic and martensitic states in the sample with as prepared, 0.5 and 1 h except 5h. The saturation magnetization changed from 35 to 68 A m²kg⁻¹ and the coercivity of these decreased from 1.8 to 0.3 mT as a function of annealing time. And also, the magnetic entropy change was determined to be 2.4 Jkg⁻¹K⁻¹ for as-prepared sample and $5.4 \,\mathrm{Jkg^{-1}K^{-1}}$ for 5 h sample. At 2 T magnetic field, the calculated relative cooling power (RCP) values for all alloys were found to be 85.8, 113.8, $120.8, 169.1 \text{ Jkg}^{-1}$ as annealing time increase.

Keywords: Heusler alloys, annealing time, magnetocaloric effect, Curie temperature, relative cooling power

Email address: atakantekgul@gmail.com (Atakan Tekgül)

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/10128950

Download Persian Version:

https://daneshyari.com/article/10128950

<u>Daneshyari.com</u>