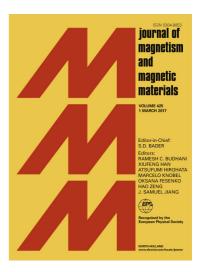
Accepted Manuscript

The hexaferrite $Sr_3Co_2Fe_{24}O_{41}$ thin films by chemical solution deposition method: synthesis and characterization

Josef Burš ík, Róbert Uhrecký, Miroslav Soroka, Radomír Kužel, Jan Prokleška


PII: S0304-8853(18)30813-8

DOI: https://doi.org/10.1016/j.jmmm.2018.08.052

Reference: MAGMA 64249

To appear in: Journal of Magnetism and Magnetic Materials

Received Date: 19 March 2018 Revised Date: 4 July 2018 Accepted Date: 20 August 2018

Please cite this article as: J. Buršík, R. Uhrecký, M. Soroka, R. Kužel, J. Prokleška, The hexaferrite Sr₃Co₂Fe₂₄O₄₁ thin films by chemical solution deposition method: synthesis and characterization, *Journal of Magnetism and Magnetic Materials* (2018), doi: https://doi.org/10.1016/j.jmmm.2018.08.052

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The hexaferrite Sr₃Co₂Fe₂₄O₄₁ thin films by chemical solution deposition method: synthesis and characterization

Josef Buršík¹ (*), Róbert Uhrecký¹, Miroslav Soroka^{1,2}, Radomír Kužel³, Jan Prokleška³

¹Institute of Inorganic Chemistry of the Czech Academy of Sciences, v.v.i., 250 68 Husinec-Řež 1001, Czech Republic

²Charles University in Prague, Faculty of Science, Hlavova 2030/8, 128 43 Prague 2, Czech Republic

³Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Praha 2, Czech Republic

(*) corresponding author: bursik@iic.cas.cz, fax: +420 220 941 502, tel. +420 266 172 197 Authors´e-mail addresses: bursik@iic.cas.cz, robertuhrecky@gmail.com, soroka@iic.cas.cz, kuzel@karlov.mff.cuni.cz, prokles@mag.mff.cuni.cz

Abstract

Thin films of $Sr_3Co_2Fe_{24}O_{41}$ hexaferrite were prepared through the chemical solution deposition method using $SrTiO_3(111)$ single crystal substrates. The influence of the annealing temperature and annealing duration time on the phase composition, structural, microstructural and magnetic properties was investigated by examining the out- and in-plane crystallographic orientation, temperature and magnetic-field dependence of the magnetization, and surface topography. The Rietveld analysis performed on the XRD patterns indicates $Sr_3Co_2Fe_{24}O_{41}$ being the dominant phase, according to the XRD texture analysis the orientation relationship between Z ferrite and substrate can be expressed as $(001)_Z \parallel (111)_{STO} \parallel$ and $[110]_Z \parallel [100]_{STO}$. The magnetization data show anomalies in the magnetic behavior occurring at temperatures close to the room temperature that are characteristic for collinear to non-collinear spin structure transitions. The magnetic-field dependence of the magnetization proves soft magnetic character of ferrite film together with pronounced magnetic anisotropy, and shows a two-step increase of magnetization at lower fields (≤ 1 T) before it becomes almost saturated at around 2 T.

Key words: hexaferrites, Sr₃Co₂Fe₂₄O₄₁, thin films, chemical solution deposition

Download English Version:

https://daneshyari.com/en/article/10128965

Download Persian Version:

https://daneshyari.com/article/10128965

Daneshyari.com