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A B S T R A C T

The consequences of coupling magnetic and elastic degrees of freedom, where spins and deformations are carried by point-like objects subject to local interactions,
are studied, theoretically and by detailed numerical simulations. From the constrained Lagrangians we derive consistent equations of motion for the coupled
dynamical variables. In order to probe the dynamics of such a system, we consider external perturbations, such as spin transfer torques for the magnetic part, and
homogeneous stresses for the elastic part, associated to their corresponding damping. This approach is applied to the study of ultrafast switching processes in anti-
ferromagnetic systems, which have recently attracted attention as candidates for anti-ferromagnetic spintronic devices. Our strategy is then checked in simple, but
instructive, situations. We carried out numerical experiments to study, in particular, how the magnetostrictive coupling and external stresses affect the nature of the
switching processes in a prototype anti-ferromagnetic material.

Introduction

The simplest classical field theory to describe the consequences of
local interactions between magnetic and mechanical degrees of
freedom is set up and its consequences are studied by numerical
methods.

The starting point is a single, point-like, object carrying both, a
classical spin vector, and a mechanical strain tensor, which can both
depend on time. Early attempts may be found in many references [1–3].

In the canonical formulation, one has to consider the Lagrangian
functional densityL as a sum of three main contributions: The first one
is the magnetic part, labeled sL , a functional of both a vector s t( ) and
its velocity s ṫ ( ). Here the classical spin (or magnetic moment), i.e. the
vector μ t( ), is to be identified with s ṫ ( ) instead of s t( ) [4].

This can be explained as follows: As there is no point–like “magnetic
charge”, in order to deduce an equation for the spin precession, that is
second order in time, the potential vector has to depend on the history
of the variable s t( ), hence it is non-locally dependent on it. Another
point of view would be to consider a “magnetic monopole”, but such
considerations, that lead to so many implications beyond the classical
level of description we want to address, will not be discussed here [5].

The second one is the mechanical part, labeled mL , a functional of
the symmetric Cauchy strain tensor ∊ t( )ij and its time derivative ∊ ṫ ( )ij . It
represents a first approximation of what would be a dynamical Hooke’s
law. This viscoelastic approach is the starting point of studies of me-
chanical dynamical deformations in materials [6].

Finally, there is the coupling between these two systems, labeled by
smL and commonly called “magnetostriction”, in this context [7].

More precisely, these Lagrangians are given by the expressions:
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These can be understood as describing interacting objects. One is a
point–like particle, whose position is labeled by s t( )i . The other is, in
fact, an extended object, whose “position” is ∊ t( )ij . Latin indices run
from 1 to 3, and the Einstein summation convention of repeated indices
is assumed.

The Lagrangian sL is invariant under localU (1) transformations, i.e.
= ∂ =sδA f δs( ), 0i i i , since the Lagrangian changes by a total derivative

[8].
The first particle couples to the vector potential A s[ ], which de-

scribes a physical magnetic field–however, since it is only magnetically
charged, it couples through its gyromagnetic ratio.

Because s ̇ represents the spin variable, ms is an inertia constant
which is here to describe the precession and may be interpreted as a
Landé factor, Vs is a scalar potential, that gives rise to an “electric field”
which can affect the conservation of the norm of the magnetization
vector. By pursuing the analogy with the charged particle in an elec-
tromagnetic field, A s[ ] is a vector potential, which depends on the
whole history of ∫=s st τ dτ( ) ̇( )t

0 and, as remarked above, transforms
under U (1).

The elastic medium is considered spatially uniform and the second
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Lagrangian describes the deformation of the elastic medium [9]. Eq.
(1b) means, in particular, that ∊[ ]mL defines a matrix model so the
trace operation is implicitly assumed. Moreover, if the elastic medium is
isotropic, this term is invariant under local SO (3) transformations, that
act with the adjoint action: ∊ → ∊R R[ ]ij ij

T , with ∈R SO (3); so the full
symmetry group of the theory, without interaction between particles, is

×U SO(1) (3).
In the expression of ∊m,mL is an inertia term for the mechanical

part. ∊V represents a scalar mechanical potential and can be expressed in
an elastic medium as = ∊ ∊∊V Cijkl ij kl

1
2 where C is the elastic stiffness

tensor. Associated to this tensor, there is an elastic compliance tensor S
such that = +C S δ δ δ δ( )ijkl ijmn m

k
n
l

n
k

m
l1

2 .
Finally, for B, ijklsmL is a coupling matrix responsible for magne-

tostriction which is taken independent of the dynamical variables [7].
For the interaction term to be, also, invariant under ×U SO(1) (3), the
fields, si and ∊ij must carry “charges” that are related in a quite specific
way [8,10]. In the case at hand, the invariance of the Lagrangian

= ∊s s Ḃ ̇ Tr [ ]i j SO ijkl klsm (3)L requires that B transforms itself as
→B R BR[ ]ijkl

T
ijkl with the proper selections of indices.

In all these expressions the indices are “space–like” and an im-
mediate question is, whether the rotational symmetry thus implied can
be promoted to a full–fledged, emergent, Lorentz symmetry. It is here
that the “no–interaction theorem” [11] is relevant and implies that this
is not possible, with a fixed–here two–number of particles (or for a
matrix of fixed, finite, rank, referring to the ∊ij). This means, in parti-
cular, that, even if both inertia coefficients, ms and ∊m , vanish, the
excitations are not, in fact, massless, since the emergent Lorentz in-
variance is not compatible with any interaction term. How Lorentz
invariance can emerge in such systems is, currently, the subject of
considerable activity–but the constraints from the no–interaction the-
orem seem not to have been fully appreciated and deserve further in-
vestigation. In the following we shall work out some of the con-
sequences of the ×U SO(1) (3) symmetry as acting on the spatial
indices.

In order to probe the dynamics of all the internal system variables,
external sources are necessary. These sources can–and here will be as-
sumed to–couple minimally to the fields and give rise to force terms in
the equations of motion.

For forces that can be expressed in terms of scalar potentials, we
have = − − ∊sj s σ[ ] ̇sources i i ij ij

ext extL . At this step, regarding the magnetic
part, j s[ ]ext is a conserved current and cannot give rise to a spin transfer
torque (STT). σ ext is an external, spatially uniform and instantaneous
mechanical stress tensor. Extensions to non-instantaneous and non-
uniform sources do not present any conceptual difficulties [12].

In order to derive expressions for the dissipative contribution in the
Lagrangian formalism, one can remark that Gilbert’s dissipation func-
tions for spins and STT can be mapped to currents, when they are not
functions of s only, but also of higher order time derivatives such as:
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∂
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where J is the amplitude of the current and p its direction. As expected,
the sign of the spin-torque dissipation function depends, apart from the
direction of the current flow, on the relative magnetization configura-
tion of the magnetic layers.

Using the same kind of reasoning, the elastic current σij can be de-
composed into two terms

= − ∊σ σ γ ̇ij ij ij
ext (3)

where σij
ext are the components of an external applied stress tensor,

which derive from a potential energy function, and γ is a mechanical
damping constant, which is proportional to the strain time rate.

For each dynamical variable, Euler–Lagrange equations of motions
(EOM)
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take the form
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where the antisymmetric Faraday tensor F is defined as usual:
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and describes spin precession, since it can be mapped to a dual pseu-
dovector ω

≡ ∊ sF ω [ ].ij ijk k

ω is understood as the effective frequency of precession, and is usually
defined as ≡ − ∂

∂ωi
H
s

1
ℏ i

, where H is the total spin hamiltonian, whose
precise expression depends on the nature of the considered magnetic
interactions.

The current = + ∂
∂j ji i s

ext
¨

losses
i

L is then the total torque applied on the
spin system.

In more conventional terms, the bulk magnetization M t( ), can be
identified with the vector μNg t V( )/ , where N is the number of magnetic
moments, V is the volume and ≡g ms the Landé factor. The magnetic
induction B can be identified with the expression

= − ∂
∂

B
μgμ
H1

B (6)

with μB is the Bohr’s magneton. Finally, the magnetic field H can be
defined by the relation between the magnetic induction and the mag-
netization

= − +H M B
μ0 (7)

with μ0 the permeability of the vacuum.
An advantage of our formulation is that these conventional quan-

tities can be understood as emergent from a microscopic approach, that
highlights the significance of the history of the sample. So in the fol-
lowing, we shall use the microscopic variables to describe the dy-
namics, since their relation to the conventional, macroscopic variables
is transparent and allows a direct description of multisublattice effects,
that have become of practical relevance and are much harder to unravel
in terms of the macroscopic variables.

For it has been demonstrated that, as in ferromagnets, in multi-
sublattice magnetic systems, also, the spin-polarized electrons transfer
spin torques on each of the atomic sites [13–16]. Consequently, the
magnetic structure of anti-ferromagnets (AFMs) may be described using
“colored” vectors sL and strain matrices ∊ij

L, that arise due to strong
exchange magnetic coupling, where L labels the different inequivalent
sites (or the sublattices).

The EOM take the form

+ + ∂
∂

− ∊ + ∊ =m s F s V
s

B s s j¨ ̇ (¨ ̇ ̇ )s
L

i
L

ij j
L s

i
L ijkl j

L
kl
L

j
L

kl
L

i
L

(8a)

∊ + ∂
∂ ∊

+ =∊
∊m V B s s σ¨ 1

2
̇ ̇L

ij
L

ij
L klij k

L
l
L

ij
L

(8b)

where = + ∊ + −j j α s s J s s p p s ṡ ¨ ( ̇ ̇ ̇ ̇ )i
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Since the variable we are, really, interested in is ≡μ st t( ) ̇( ), we can

rewrite the system as
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