
Accepted Manuscript

Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties

Dongwei Xu, Xuhai Xiong, Ping Chen, Qi Yu, Hairong Chu, Sen Yang, Qi Wang

PII:	S0304-8853(18)31356-8
DOI:	https://doi.org/10.1016/j.jmmm.2018.09.019
Reference:	MAGMA 64301
To appear in:	Journal of Magnetism and Magnetic Materials
Received Date:	5 May 2018
Revised Date:	27 July 2018
Accepted Date:	5 September 2018

Please cite this article as: D. Xu, X. Xiong, P. Chen, Q. Yu, H. Chu, S. Yang, Q. Wang, Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties, *Journal of Magnetism and Magnetic Materials* (2018), doi: https://doi.org/10.1016/j.jmmm.2018.09.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Superior corrosion-resistant 3D porous magnetic graphene

foam-ferrite nanocomposite with tunable electromagnetic wave

absorption properties

Dongwei Xu a , Xuhai Xiong b , Ping Chen a,* , Qi Yu b,* , Hairong Chu $^a,~$ Sen Yang a , Qi Wang b

^{a.} State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian (116024), China

E-Mail: chenping_898@126.com

^{b.} Liaoning Key laboratory of advanced polymer matrix composites, Shenyang Aerospace University,

Shenyang (110136), China

E-Mail: yuqi1027@126.com

Abstract

Superior corrosion-resistant magnetic graphene foams decorated by Fe₃O₄ (MGF@Fe₃O₄) have been constructed through *in-situ* simultaneous deposition of ferrous ion (Fe²⁺) induced graphene oxide (GO). Their chemical composition, micro structure and properties were investigated in detail by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and vector network analyzer. These 3D porous MGF@Fe₃O₄ exhibit much better electromagnetic wave (EMW) absorption properties and corrosion resistance than 2D hybrid materials of magnetic metal particles and graphene sheets. The tunable EMW absorption performance can be easily implemented by tailoring their micro structure. Their minimum reflection loss (RL_{min}) value reaches -64.4 dB at 10.8 GHz and maximum effective absorption bandwidth (*EAB*) is up to 6.0 GHz from 12 GHz to 18 GHz with a matching thickness of 2.4 mm. After treatment in hydrochloric acid for 70 days, the acid-treated MGF@Fe₃O₄ still keeps excellent EMW absorption performance with their decrease of saturation magnetization lower

Download English Version:

https://daneshyari.com/en/article/10129064

Download Persian Version:

https://daneshyari.com/article/10129064

Daneshyari.com