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A B S T R A C T

Mathematical models are essential tools to study how the cardiovascular system maintains homeostasis. The
utility of such models is limited by the accuracy of their predictions, which can be determined by uncertainty
quantification (UQ). A challenge associated with the use of UQ is that many published methods assume that the
underlying model is identifiable (e.g. that a one-to-one mapping exists from the parameter space to the model
output). In this study we present a novel workflow to calibrate a lumped-parameter model to left ventricular
pressure and volume time series data. Key steps include using (1) literature and available data to determine
nominal parameter values; (2) sensitivity analysis and subset selection to determine a set of identifiable para-
meters; (3) optimization to find a point estimate for identifiable parameters; and (4) frequentist and Bayesian UQ
calculations to assess the predictive capability of the model. Our results show that it is possible to determine 5
identifiable model parameters that can be estimated to our experimental data from three rats, and that computed
UQ intervals capture the measurement and model error.

1. Introduction

Precision medicine is a growing model of healthcare that proposes
to customize of care, medical decisions, practices, and products to each
individual patient. This approach is important, as pathologies such as
cancer, autoimmune disorders, and cardiovascular diseases are unique
to a given individual making it challenging to develop diagnostic and
treatment protocols. One approach, to studying patient-specific com-
plexities, is to use mathematical modeling to estimate function and
predict features that are difficult to measure, thus providing a more
comprehensive set of information to distinguish between individual
patients.

A rich history of cardiovascular modeling exists in the literature,
typically presented either from a fluid dynamics perspective (resulting
in systems of PDEs) [1–3] to study local flow properties, or from a
compartment perspective (resulting in systems ODEs) to study systems
level dynamics [4,5]. The model type used depends on the questions
investigated. Fluid dynamics models (1D-3D) are excellent for ex-
amining flow properties, e.g. how local flow is impacted by geometric
structure, such as flow past a stent, flow changes following bypass

surgery, flows in aneurysms, valves function, or flow and wave pro-
pagation changes in hypertension or diabetes [6–11]. However, due to
computational complexity, 1D-3D models are typically not used in
studies aiming to understand how the CV system interacts with other
systems, e.g. autonomic control by neuro-humoral mechanisms, the
immune system, or physiologically-based pharmacokinetics [12–14].
The main obstacle is that models used in this setting often need to be
solved over long time-scales. For these types of applications compart-
ment ODE models are more appropriate. One disadvantage to ODE
models is that they are difficult to parameterize and fit to data. To il-
lustrate the steps associated with this process we have chosen to ana-
lyze a simple 5-compartment (0D) model inspired by models used to
predict changes during head-up tilt [15]. In ODE models, compartments
represent groups of vessels (e.g. large or small arteries or veins, capil-
laries, or vessels supplying specific tissues or organs) coupled to a heart
compartment that act as a pump to drive the system. Some models
include both pulmonary and systemic circulations [16], while others
analyze one of the two systems [17]. ODE models of this type can be
used to extract vascular properties such as vascular resistance, cardiac
contractility, or compliance by fitting models to pressure and flow data
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from noninvasive imaging studies [15,18,19] and/or from invasive
catheterization [20–22] studies.

One of the biggest challenges in calibrating compartment models to
data is obtaining accurate parameter estimates. Even in its basic form,
where the model is formulated using systems of linear differential
equations, forced by a contracting heart, it is typically not possible to
uniquely estimate all model parameters. To overcome this, we use
sensitivity analysis and subset selection for a-priori study of the model
structure followed by parameter estimation and uncertainty quantifi-
cation. In general, parameters that are unidentifiable as a result of
model structure are referred to as structurally unidentifiable [23],
whereas parameters that are unidentifiable as a result of practical re-
strictions, such as availability and quality of data, are referred to as
practically unidentifiable [24]. Theoretically, structural identifiability is
a prerequisite for practical identifiability. However, in practice it can be
difficult to establish the former, since analysis is restricted to models for
which it is possible to define a unique input-output relation [23].

Only a few studies have addressed structural identifiability in car-
diovascular models. Kirk et al. [25], studying Windkessel models,
showed that three of four parameters are identifiable, and Pironet
et al. [26] demonstrated that every parameter in a linear six-compart-
ment model including a left and right heart, systemic and pulmonary
arteries and veins are structurally identifiable if outputs contain both
pressure (in all arteries and veins) and left/right ventricular stroke
volume, while models relying on either pressure or volume alone are
structurally unidentifiable. Other studies have employed sensitivity and
practical, opposed to structural, identifiability analysis to predict ar-
terial blood pressure and cardiac output [15,19,27,28]. Several recent
studies have addressed uncertainty quantification, mostly for analysis
of 1D fluid dynamics models. To our knowledge, these methodologies
have not previously been applied to analysis of compartment models.
The study by Eck et al. [29] developed a guide to uncertainty quanti-
fication in cardiovascular models presenting a number of methodolo-
gies. Several studies have predicted uncertainties in specific one-di-
mensional fluid mechanics models [30–35]. Of these, three studies
accounted for uncertainty using Kalman filtering [30–32], two used
polynomial chaos expansion, and one [35] used an MCMC approach
based on the Delayed Rejection Adaptation Metropolis (DRAM) algo-
rithm [36]. To our knowledge, none of these studies combined these
techniques into an organized workflow for the determination of model
parameters in compartmental CV models given a specific data set.

In this study, we present a general multi-stage workflow applied to
analysis of a five compartment model for the systemic circulation with
left ventricular volume and blood pressure data from three Sprague
Dawley rats. The key steps in our workflow include: (1) the use of lit-
erature and available data to compute nominal parameter values spe-
cific to each rat; (2) sensitivity analysis and subset selection to de-
termine a set of identifiable parameters; (3) optimization to compute
point estimates for the identifiable parameters; and (4) statistical
techniques to quantify uncertainty of the model output.

2. Methods

2.1. Experimental data

Data analyzed here are extracted from experiments performed on 3
Sprague-Dawley (SD) rats (2 male, 1 female). The average weight of
these animals was 358.0 ± 19.6 g. The rats were anesthetized with
sodium pentobarbital (50mg/kg, ip), and catheters were placed in a
femoral vein and artery for administration of anesthetics and mon-
itoring of systemic blood pressure, respectively. A pressure-volume
conductance catheter (Millar SPR-869, 2F tip with four electrodes and
6 mm spacing) was inserted through the right carotid artery into the left
ventricle. For each rat basic physiological measures (sex, weight, heart
rate, average stroke volume and cardiac output, Table 1) were recorded
along with continuous measurements of left ventricular volume and

pressure. For this study, approximately 20-second time-series data,
measured at rest, were selected for model identification and the final
0.5 s of each data set was used to calibrate the model, shown in Fig. 1.

Volume-conductance calibration
One of the most common methods for translating conductance

measurements to volume is using Baan’s equation

= −V t L
ασ

G t G( ) [ ( ) ],p
2

where V(t) is the left ventricular volume, L is the spacing between
electrodes on the catheter, σ is the specific conductivity of the blood,
G(t) is the measured total conductance (measured as a voltage directly
proportional to the conductance), Gp is the parallel conductance
through the myocardium, and α is a stroke volume scaling factor de-
termined from cuvette calibration, obtained by infusing a known hy-
pertonic saline bolus before the experiment and extracting known vo-
lumes after the experiment. This allows subtraction of parallel
conductance through the myocardium from the total measured con-
ductance.

In this study, the baseline left ventricular pressure and volume time-
course analyzed is extracted from a longer experimental time-course
involving sequential blood withdrawals. This experimental manipula-
tion (blood withdrawal) violates the assumption of constant σ, Gp (and
possibly α) in Baan’s equation. It has previously been found that the
volume-voltage relationships determined using cuvette calibration
measures is highly sensitive to changes in hematocrit and hence con-
ductivity of blood [21,37]. Furthermore, sufficient loss of blood

Table 1
Rat average data.

Rat Sex Weight Heart rate Stroke volume Cardiac output
(g) (beats/min) (μl) (ml/min)

Rat 1 Male 339 240 ± 3 308 ± 1 74 ± 0.2
Rat 2 Male 350 240 ± 3 216 ± 1 52 ± 0.2
Rat 3 Female 342 420 ± 3 143 ± 1 60 ± 0.2

Fig. 1. Left ventricle pressure and volume data from three rats. Each column
corresponds to a different rat. (a) shows the 20-second raw time-series data and
(b) shows a zoomed-in view of the final 0.5 s used to calibrate the model output
(marked by vertical black lines on the top two rows.).
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