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A B S T R A C T

Dose-response studies are used throughout pharmacology, toxicology and in clinical research to determine safe,
effective, or hazardous doses of a substance. When involving animals, the subjects are often housed in groups;
this is in fact mandatory in many countries for social animals, on ethical grounds. An issue that may consequently
arise is that of unregulated between-subject dosing (transmission), where a subject may transmit the substance to
another subject. Transmission will obviously impact the assessment of the dose-response relationship, and will
lead to biases if not properly modelled. Here we present a method for determining the optimal design – per-
taining to the size of groups, the doses, and the killing times – for such group dose-response experiments, in a
Bayesian framework. Our results are of importance to minimising the number of animals required in order to
accurately determine dose-response relationships. Furthermore, we additionally consider scenarios in which the
estimation of the amount of transmission is also of interest. A particular motivating example is that of
Campylobacter jejuni in chickens. Code is provided so that practitioners may determine the optimal design for
their own studies.

1. Introduction

A group dose-response experiment involves exposing subjects to a
range of doses of a substance (for example, an infectious agent, or
bacteria or a drug) and measuring their responses (for example, if they
became colonised) [4]. These experiments are routinely used to char-
acterise the relationship between the dose of a substance and the re-
sponse in a subject, known as the dose-response relationship.

Studies of this type have been widely used throughout pharma-
cology [27], toxicology [5] and in clinical trials [3], and methods for
characterising the dose-response relationship developed [28]. However,
a recent study by Conlan et al. noted a potential issue with such ana-
lyses when considering infectious agents [9]: in some cases, subjects
may transmit their dose to other subjects, hence complicating the ana-
lysis. The motivating example is of Campylobacter jejuni in chickens.

The Campylobacter genus of bacteria is the most common cause of
food-borne diarrhoeal disease in developed and developing countries –
surpassing Salmonella and Shigella spp. [14]. Group dose-response ex-
periments with C. jejuni in chickens are a useful tool in understanding
the dose-response and transmission characteristics of the bacteria, al-
lowing sensible measures to be put in place to contain, or eradicate, the

infection in livestock used for human consumption. Chickens are social
animals, and thus ethically are required to be co-housed [2]. Conlan
et al. [9] noted that previous statistical analyses of the dose-response
characteristics of C. jejuni in chickens had neglected the potential for
transmission between co-housed subjects – resulting in incorrect esti-
mation of the dose-response relationship.

The presence of transmission in these experiments leads to an “all-
or-nothing” response if the subjects are observed too late – that is, once
at least one subject is infected within a group, transmission to the in-
itially uninfected chickens leads to more chickens being colonised than
is representative of the administered dose. This yields a lower estimated
ID50 (i.e., the dose required to infect 50% of the population, on
average), and steeper slope-at-half-height – common statistics used to
characterise dose-response curves [9]. To limit between-subject dosing,
one might attempt to sample the chickens after a very short period of
time following initial dosing. However, there exists a latent period
between a chicken being challenged and it becoming colonised (i.e., it
presenting its response), thus this also provides inaccurate assessment
of the number of colonised subjects. Finally, a chicken is “observed” via
post-mortem caecal sampling, meaning that only one observation of
each subject is possible.
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Studies of this form – grouped dose-response experiments with the
potential for between-subject dosing – are common, and given the
ethical, financial and physical constraints associated with such studies,
determining their optimal experimental design in order to obtain the
most information about the dose-response relationship is important.
One must consider the allocation of the number of subjects to groups,
possibly different doses, and the associated time(s) to observe the
process, in order to gain the most information about the dose-response
relationship. In particular, using these optimal design tools, we can
quantify the trade-off in information between allocating many in-
dividuals to few groups (doses), or few individuals to many groups
(doses). We furthermore give consideration to scenarios in which the
estimation of the transmission rate is also of interest – highlighting the
potential for these tools to inform design of experiments where the
purpose is understanding the transmission dynamics of a pathogen
(e.g., avian influenza as in [26]).

We work within a Bayesian framework, allowing for use of prior
information concerning the various components of the dose-response
study, and transmission dynamics. Our method involves a novel con-
tinuous-time Markov chain model for the dynamics within such a study,
combined with recently-developed methods for Bayesian optimal ex-
perimental design [20,21]. MATLAB code is provided so that practi-
tioners may determine the optimal design for their own studies.

2. Methodology

2.1. Modelling of group dose-response experiments

The first step in determining the optimal experimental design for
these experiments is determining suitable models to represent the dy-
namics amongst a group of subjects. In determining a suitable model,
we must ensure we account for the experimental aspects we wish to
determine as part of our optimal designs. First and foremost, we are
interested in the optimal doses to allocate to subjects in order to gain
the most information about the dose-response relationship. Hence, we
must represent the dose-response relationships we believe are possible
given the substance and subjects being studied. This is achieved by
specifying a suitable prior distribution for the model parameters, which
results in a range of dose-response curves we believe may eventuate
from the experiment (examples given in Section 3).

We must also determine when to observe the process, to measure
the response – in this example, we count the number of infectious
chickens in each group (i.e., our data is the number of infectious in-
dividuals in each group). There are three important considerations
when determining the optimal observation time for these group dose-
response experiments. First, observation here is assumed to involve
killing the subject; hence, we have only one observation for each sub-
ject. Second, transmission may occur which may in turn increase the
number of colonised subjects we observe for a given dose, thus skewing

the dose-response relationship to appear steeper, and reducing the es-
timate of the ID50 [9]. Hence, this suggests we should observe the
process early enough in order to mitigate transmission. However, the
earlier observation time due to transmission is in direct competition
with the third and final consideration: the latent period. That is, there is
a delay between exposure to a dose (say via injection, or ingestion) and
colonisation. Thus, in determining the optimal observation time, we
must allow sufficient time for the subject to pass through this latent
period, but still observe the process early enough to ensure that there
has not been significant amounts of transmission between subjects.
With regards to the design, we choose one dose and observation time
for all chickens within a group – that is, each chicken within a group
receives an identical dose, and is killed at the same time.

In order to cover these three important aspects – the dose-response
relationship, a latent period, and transmission – we propose a con-
tinuous-time Markov chain model to incorporate each of these stages.
We use the beta-Poisson model for the probability of infection, Pinf, for a
subject given dose D. That is,

≈ − ⎛
⎝

+ ⎞
⎠

−
P D α δ D

δ
( ; , ) 1 1 .

α

inf (1)

This follows as the approximation to the hypergeometric model used by
Conlan et al. [9] – suitable when δ>>max(α, 1). Common statistics
used to characterise a dose-response relationship are the ID50 and the
Slope-at-half-height (SHH). The ID50 represents the dose required to
infect 50% of the population, and the slope-at-half-height is a measure
of the susceptibility of the host to the pathogen [9]. The ID50 and SHH
can be evaluated with respect to α and δ as follows:
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Note that the slope-at-half-height is independent of δ.
The model we consider takes into account both the latent period of

infection, as well as transmission between subjects. We propose a SEkI
Markov chain epidemic model, where: subjects begin the process as
healthy; then, the subjects move into either the (first, of k) exposed
class (with probability Pinf, i.e., they are colonised by the design dose),
or the susceptible class (with probability − P1 )inf otherwise. We choose
to have more than one exposed class (k>1) to allow the distribution of
time spent in the latent period to follow an Erlang distribution – a more
representative distribution of the latent period than the exponential
distribution (e.g., [23,30]). Once a subject has passed through the k
exposed classes, they transition into the infectious class. Once a subject
is in the infectious class, they may transmit some dose to uncolonised
subjects, where β is the effective transmission rate. Fig. 1 provides a
graphical representation of this process. In the example considered
herein, we use =k 2 and =γ 2, in order to achieve a mean time be-
tween exposure and infectiousness of 1 day (and probability 0.9 of
being infectious by day 2) [7], consistent with values reported in [8] on

Fig. 1. Diagram illustrating the progression of subjects through the complete model. Subjects begin as Healthy (H), and after being dosed, move to the first Exposed
class (E1) with probability Pinf, or otherwise they move to the Susceptible class (S). Once exposed, the subjects pass through k exposed classes ( …E E, , k1 ), each at rate
γ, to reach the Infectious class (I). Once in the infectious class, the subject can transmit the infection to subjects in the susceptible class with effective transmission rate
β.
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