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MONOMIAL IDEALS WITH TINY SQUARES

SHALOM ELIAHOU, JÜRGEN HERZOG AND MARYAM MOHAMMADI SAEM

Abstract. Let I ⊂ K[x, y] be a monomial ideal. How small can μ(I2) be in
terms of μ(I), where μ denotes the least number of generators? It was widely
expected that the inequality μ(I2) > μ(I) should hold whenever μ(I) ≥ 2. Here
we disprove this expectation and provide a somewhat surprising answer to the
above question.

1. Introduction

For an ideal I in a Noetherian ring R, let μ(I) denote as usual the least number
of generators of I. If μ(I) = m, how small can μ(I2) be in terms of m? Obviously,
in suitable rings with zero-divisors, we may have μ(I2) = 0. There even exist one-
dimensional local domains (R,m) with the property that the square of their maximal
ideal m requires less generators than m itself, see [1, 2]. However, if R is a regular
local ring, or if R is a polynomial ring over a field K and I is a homogeneous ideal of
R, it has been expected in [3] that the inequality μ(I2) > μ(I) should hold whenever
μ(I) ≥ 2. This is indeed the case for any integrally closed ideal I in a 2-dimensional
regular local ring. On the other hand, it is not too difficult to construct examples
of monomial ideals I in a polynomial ring S with at least 4 variables such that
μ(I2) < μ(I). However, these examples satisfy height I < dimS. So far no ideals
I with μ(I2) < μ(I) were known for 2-dimensional regular rings. In this paper, we
shall prove the following statements.

Theorem 1.1. For every integer m ≥ 5, there exists a monomial ideal I ⊂ K[x, y]
such that μ(I) = m and μ(I2) = 9.

Moreover, this result is best possible for m ≥ 6.

Theorem 1.2. Let I ⊂ K[x, y] be a monomial ideal. If μ(I) ≥ 6 then μ(I2) ≥ 9.

Here are some notation to be used throughout. We denote by M the set of
monomials in K[x, y], i.e.

M = {xiyj | i, j ∈ N}.
As usual, we view M as partially ordered by divisibility.

For a monomial ideal J ⊂ K[x, y], we denote by G(J) its unique minimal system of
monomial generators. It is well known that G(J) is of cardinality μ(J) and consists
of all monomials in J which are minimal under divisibility, i.e.

G(J) = (M∩ J
) \ (M∩ J

)M∗

where M∗ = M\ {1}.
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