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Abstract Let G be a transitive permutation group on a finite set Ω. If G
is multiplicity-free, then EndG(C[Ω]) is commutative, and Krein parameters
qki,j can be defined. Scott proved that if qki,j �= 0, then the corresponding
irreducible characters χi, χj, χk of G satisfy (χiχj, χk) �= 0. In this paper, we
prove the converse of this implication for transitive permutation groups of
semidirect product type whose regular normal subgroup is abelian.
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1 Introduction

A finite permutation group is called multiplicity-free if the permutation char-
acter is a sum of distinct irreducible characters. For a transitive permutation
group G on a finite set Ω, let Λ0,Λ1, . . . ,Λd be the orbits of G on Ω×Ω, and
A0, A1, . . . , Ad be the square matrices indexed by Ω such that (Ai)x,y = 1
if (x, y) ∈ Λi and 0 otherwise, for i = 0, 1, . . . , d. Then the linear span
A = 〈A0, A1, . . . , Ad〉C is an algebra isomorphic to EndG(C[Ω]), where C[Ω]
is the permutation module of G on Ω. If G is multiplicity-free, then A is
commutative and the number of distinct irreducible characters appearing in
the permutation character is equal to d+1. In other words, the permutation
module C[Ω] decomposes into d + 1 non-isomorphic irreducible G-modules:
C[Ω] = V0 ⊕ V1 ⊕ · · · ⊕ Vd. For i = 0, 1, . . . , d, let Ei be the orthogonal pro-
jection from C[Ω] onto Vi. Then Ei ∈ A and {E0, E1, . . . , Ed} is a basis of
A. Let ◦ be the Hadamard product. Since A is closed under the Hadamard
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