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Abstract. In this paper, we introduce notions of J-set near zero and C-set

near zero for a dense subsemigroup of ((0,+∞),+) and state the Central

Sets Theorem near zero. Among the other results for a dense subsemigroup

S ⊆ ((0,+∞),+), we give some sufficient and equivalent algebraic condi-

tions on a subset A ⊂ S to be a J−set near zero and to be a C−set near

zero.
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J-set, Piecewise syndetic set near zero.

2000 Mathematics subject classification: Primary: 54D35, 22A15, Sec-

ondary: 05D10, 54D80.

1. Introduction

Let (S,+) be a discrete semigroup. The collection of all ultrafilters on S is

called the Stone-Čech compactification of S and denoted by βS. For A ⊆ S,

define A = {p ∈ βS : A ∈ p}, then {A : A ⊆ S} is a basis for the open sets

(also for the closed sets) of βS. There is a unique extension of the operation

to βS, making (βS,+) a right topological semigroup ( i.e. for each p ∈ βS,

the right translation ρp is continuous, where ρp(q) = q + p) and also for each

x ∈ S, the left translation λx is continuous, where λx(q) = x+ q. We identify

the principal ultrafilters with the points of S, and with this identification S is
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