Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Ideals of nowhere dense sets in some topologies on positive integers

Marta Kwela*, Andrzej Nowik*

Institute of Mathematics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, ul. Wita Stwosza 57, 80-308 Gdańsk, Poland

sentability.

ABSTRACT

ARTICLE INFO

Article history: Received 8 June 2018 Received in revised form 17 August 2018 Accepted 25 August 2018 Available online 31 August 2018

MSC: 54H05 03E05 11B05

11A41

Keywords: Ideals Furstenberg's topology Golomb's topology Kirch's topology Marczewski–Burstin representability

1. Introduction

Let \mathbb{N} denote the set of positive integers and \mathbb{N}_0 – the set of non-negative integers. Following [14], for all $a, b \in \mathbb{N}$ the symbol $\langle b, a \rangle$ stands for the infinite arithmetic progression with the initial term b and the difference a:

 $\langle b, a \rangle = \{an + b : n \in \mathbb{N}_0\} = \{b, b + a, b + 2a, \ldots\}.$

We use the symbol (a, b) to denote the greatest common divisor of a and b. The letter \mathbb{P} symbolizes the set of all prime numbers and $\Theta(a)$ stands for the set of all prime factors of $a \in \mathbb{N}$. By SF let us denote the set of square-free numbers (i.e., numbers not divisible by any square greater than 1):

* Corresponding author.

© 2018 Elsevier B.V. All rights reserved.

We investigate the ideals of nowhere dense sets in three topologies on \mathbb{N} (namely, the

Furstenberg's, Golomb's, and Kirch's topology) related to arithmetic progressions.

In particular, we explore relationships between these ideals, and show that each

of them has a topological representation and cannot be extended to a summable

ideal. Moreover, we study a related notion of Marczewski-Burstin countable repre-

E-mail addresses: Marta.Kwela@mat.ug.edu.pl (M. Kwela), andrzej@mat.ug.edu.pl (A. Nowik).

 $[\]label{eq:https://doi.org/10.1016/j.topol.2018.08.015} 0166-8641/ © 2018 Elsevier B.V. All rights reserved.$

$$SF = \{1, 2, 3, 5, 6, 7, 10, 11, \ldots\}.$$

By squareful numbers we mean numbers which are not square-free, i.e., numbers for which an exponent of some prime factor is at least 2.

Let $[\mathbb{N}]^{\omega}$ denote the family of all infinite subsets of \mathbb{N} .

By treating the power set $\mathcal{P}(\mathbb{N})$ as the space $2^{\mathbb{N}}$ of all functions $f: \mathbb{N} \to 2$ (equipped with the product topology, where each space $2 = \{0, 1\}$ carries the discrete topology) and identifying subsets of \mathbb{N} with their characteristic functions, we can talk about descriptive complexity of subsets of $\mathcal{P}(\mathbb{N})$.

For any partition $\{X_n\}_{n\in\mathbb{N}}$ of \mathbb{N} a set $S\subseteq\mathbb{N}$ is called a selector of the partition $\{X_n\}_{n\in\mathbb{N}}$ if and only if $\forall_{n\in\mathbb{N}} |X_n \cap S| = 1$.

For other basic notions concerning set theory and topology see, e.g., [13].

1.1. Three topologies

One can consider three topologies on \mathbb{N} :

- Furstenberg's topology T_F with the base B_F = {⟨b, a⟩ : b ≤ a},
- Golomb's topology \mathcal{T}_G with the base $\mathcal{B}_G = \{ \langle b, a \rangle : (a, b) = 1, b < a \},$
- Kirch's topology \mathcal{T}_K with the base $\mathcal{B}_K = \{ \langle b, a \rangle : (a, b) = 1, b < a, a \in \mathbb{SF} \}.$

The topology \mathcal{T}_F was introduced in 1955 by H. Furstenberg in [11]. With its use he presented an elegant topological proof of the existence of infinitely many prime numbers. In 1959, S. Golomb in [12] presented a similar proof using the topology \mathcal{T}_G defined in 1953 by M. Brown in [7]. In 1969, A. Kirch in [14] defined the topology \mathcal{T}_K , weaker than the topology of Golomb. All of these topologies have recently been studied by P. Szczuka, e.g., in [21], [22], [23].

Actually, the Furstenberg's topology was originally defined on \mathbb{Z} , with the base consisting of all doubly infinite arithmetic progressions (from $-\infty$ to $+\infty$). It turned \mathbb{Z} into a metrizable, zero-dimensional, and totally disconnected space. In this paper, in order to make our considerations more unified, we trim this topology to \mathbb{N} . Note that the main properties are preserved: being a Hausdorff, regular, and totally disconnected space is hereditary. ($\mathbb{N}, \mathcal{T}_F$) also remains second-countable and thus, from the Tychonoff–Urysohn metrization theorem, we get that the space is metrizable. The requirement that $b \leq a$ guarantees that every basic set is closed, so the space is still zero-dimensional.

The topologies of Golomb and Kirch both are Hausdorff but not regular, and connected – however, \mathcal{T}_G is not locally connected, as opposed to \mathcal{T}_K .

1.2. Three ideals

An *ideal* on \mathbb{N} is a family of subsets of \mathbb{N} , closed under taking finite unions and subsets of its elements. We assume that an ideal is proper ($\neq \mathcal{P}(\mathbb{N})$) and contains all finite sets. By Fin we denote the ideal of all finite subsets of \mathbb{N} .

Obviously, in any (non-trivial¹) topology, the nowhere dense sets form an ideal. Let us then define three ideals on \mathbb{N} :

 $^{^{1}}$ The topology should have a base consisting only of infinite sets – otherwise, the ideal of nowhere dense sets would not contain all finite sets.

Download English Version:

https://daneshyari.com/en/article/10130517

Download Persian Version:

https://daneshyari.com/article/10130517

Daneshyari.com