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1. Introduction

Let N denote the set of positive integers and Ny — the set of non-negative integers. Following [14], for
all a,b € N the symbol (b,a) stands for the infinite arithmetic progression with the initial term b and the
difference a:

(bya) ={an+b: neNg}={b, b+a, b+2a, ...}

We use the symbol (a,b) to denote the greatest common divisor of a and b. The letter PP symbolizes the set
of all prime numbers and ©(a) stands for the set of all prime factors of a € N. By SF let us denote the set
of square-free numbers (i.e., numbers not divisible by any square greater than 1):
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SF = {1,2,3,5,6,7,10,11,...}.

By squareful numbers we mean numbers which are not square-free, i.e., numbers for which an exponent of
some prime factor is at least 2.

Let [N]* denote the family of all infinite subsets of N.

By treating the power set P(N) as the space 2" of all functions f: N — 2 (equipped with the product
topology, where each space 2 = {0, 1} carries the discrete topology) and identifying subsets of N with their
characteristic functions, we can talk about descriptive complexity of subsets of P(N).

For any partition {X, }nen of N a set S C N is called a selector of the partition {X,, }nen if and only if
VneN ‘Xn N S‘ =1.

For other basic notions concerning set theory and topology see, e.g., [13].

1.1. Three topologies
One can consider three topologies on N:

o Furstenberg’s topology Tr
with the base Bp = {(b,a): b <a},
o Golomb’s topology Tg
with the base Bg = {(b,a): (a,b) =1, b<a},
o Kirch’s topology Tk
with the base Bx = {(b,a) : (a,b) =1, b<a, a € SF}.

The topology Tr was introduced in 1955 by H. Furstenberg in [11]. With its use he presented an elegant
topological proof of the existence of infinitely many prime numbers. In 1959, S. Golomb in [12] presented a
similar proof using the topology T defined in 1953 by M. Brown in [7]. In 1969, A. Kirch in [14] defined
the topology Tk, weaker than the topology of Golomb. All of these topologies have recently been studied
by P. Szczuka, e.g., in [21], [22], [23].

Actually, the Furstenberg’s topology was originally defined on Z, with the base consisting of all doubly
infinite arithmetic progressions (from —oo to 4+00). It turned Z into a metrizable, zero-dimensional, and
totally disconnected space. In this paper, in order to make our considerations more unified, we trim this
topology to N. Note that the main properties are preserved: being a Hausdorff, regular, and totally discon-
nected space is hereditary. (N, 7r) also remains second-countable and thus, from the Tychonoff-Urysohn
metrization theorem, we get that the space is metrizable. The requirement that b < a guarantees that every
basic set is closed, so the space is still zero-dimensional.

The topologies of Golomb and Kirch both are Hausdorff but not regular, and connected — however, 7o
is not locally connected, as opposed to Txk.

1.2. Three ideals

An ideal on N is a family of subsets of N, closed under taking finite unions and subsets of its elements.
We assume that an ideal is proper (# P(N)) and contains all finite sets. By Fin we denote the ideal of all
finite subsets of N.

Obviously, in any (non-trivial') topology, the nowhere dense sets form an ideal. Let us then define three
ideals on N:

1 The topology should have a base consisting only of infinite sets — otherwise, the ideal of nowhere dense sets would not contain
all finite sets.
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