Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Selective separability on spaces with an analytic topology $\stackrel{\star}{\approx}$

Javier Camargo^a, Carlos Uzcátegui^{a,b,*}

 ^a Escuela de Matemáticas, Facultad de Ciencias, Universidad Industrial de Santander, Ciudad Universitaria, Carrera 27 Calle 9, Bucaramanga, Santander, A.A. 678, Colombia
^b Centro Interdisciplinario de Lógica y Álgebra, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela

ABSTRACT

ARTICLE INFO

Article history: Received 9 June 2018 Received in revised form 28 August 2018 Accepted 3 September 2018 Available online 5 September 2018

MSC: primary 54H05 secondary 54D65

Keywords: Ramsey ideals p^+ -ideals q^+ -ideals Selective separability SS^+

1. Introduction

In this paper we study some combinatorial properties of countable topological spaces. We will focus on spaces with a definable topology ([17,18]), that is to say, the topology of the space, viewed as a subset of 2^X , has to be a definable set. Typically, the topology will be assumed to be an analytic subset of 2^X . The interplay between combinatorial properties of a space and the descriptive complexity of the topology itself has shown to be quite fruitful [6,15,17–19].

A topological space X is selectively separable, denoted SS, if for any sequence $(D_n)_n$ of dense subsets of X there is a finite $a_n \subseteq D_n$ for all $n \in \mathbb{N}$ such that $\bigcup_n a_n$ is dense in X. This notion was introduced by Scheepers [14] and has received a lot of attention ever since (see for instance [1-6,9]). Bella et al. [4]

* Corresponding author.

Topology and its Applications

We study two form of selective separability, SS and SS^+ , on countable spaces with an analytic topology. We show several Ramsey type properties which imply SS. For analytic spaces X, SS^+ is equivalent to have that the collection of dense sets is a G_{δ} subset of 2^X , and also equivalent to the existence of a weak base which is an F_{σ} -subset of 2^X . We study several examples of analytic spaces.

© 2018 Published by Elsevier B.V.

 $^{^{*}}$ The authors thank La Vicerrectoría de Investigación y Extensión de la Universidad Industrial de Santander for the financial support for this work, which is part of the VIE project # C-2018-05.

E-mail addresses: jcamargo@saber.uis.edu.co (J. Camargo), cuzcatea@saber.uis.edu.co (C. Uzcátegui).

showed that every separable space with countable fan tightness is SS. On the other hand, Barman and Dow [1] showed that every separable Fréchet space is also SS. In section 3 we present several combinatorial properties which implies SS.

Shibakov [15] showed a stronger result when the topology of the space is analytic. He showed that any Fréchet countable space with an analytic topology has a countable π -base (and thus it is SS). The existence of a countable π -base provides a characterization of a property quite similar to SS, it is a property related to a game naturally associated to a selection principle. Let G_1 be the two player game defined as follows. Player I plays dense subsets of X and Player II picks a point from the set played by I. So a run of the game consists of a sequence of pairs (D_n, x_n) where each D_n is a dense set played by I and $x_n \in D_n$ is the response of II. We say that II wins if $\{x_n : n \in \mathbb{N}\}$ is dense. Scheepers [14] showed that X has a countable π -base if, and only if, II has a winning strategy for G_1 . For the property SS a similar game, denoted G_{fin} , is defined as before but now player II picks a finite subset of the dense set played by I. A space X has the property SS^+ , if II has a winning strategy for G_{fin} . We show that, for X with an analytic topology, the game G_{fin} is determined. We also show that SS^+ is characterized by the existence of an F_{σ} weak π -base (that is, an F_{σ} subset \mathcal{P} of 2^X such that every set in \mathcal{P} has non empty interior and every non empty open set contains a set from \mathcal{P}). This turns out to be also equivalent to having that the collection of dense subsets of X is a G_{δ} subset of 2^X . We compare this notion of a weak base with that of a σ -compactlike family introduced in [2]. Our characterization of SS^+ allows to show very easily that the product of two SS^+ spaces with analytic topology is also SS^+ . A result that holds in general as shown by Barman–Dow [2]. However, our proof is different. We analyze a space constructed by Barman–Dow [2] which is SS and not SS^+ and show it has an analytic topology and has countable fan tightness. Finally, in the last section of the paper we present several examples of countable spaces.

2. Preliminaries

An *ideal* on a set X is a collection \mathcal{I} of subsets of X satisfying: (i) $A \subseteq B$ and $B \in \mathcal{I}$, then $A \in \mathcal{I}$. (ii) If $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$. (iii) $\emptyset \in \mathcal{I}$. We will always assume that an ideal contains all finite subsets of X. If \mathcal{I} is an ideal on X, then $\mathcal{I}^+ = \{A \subseteq X : A \notin \mathcal{I}\}$. Fin denotes the ideal of finite subsets of the non negative integers N. We denote by $A^{<\omega}$ the collection of finite sequences of elements of A. If s is a finite sequence on A and $i \in A$, |s| denotes its length and $s \cap i$ the sequence obtained concatenating s with i. For $s \in 2^{<\omega}$ and $\alpha \in 2^{\mathbb{N}}$, let $s \prec \alpha$ if $\alpha(i) = s(i)$ for all i < |s| and $[s] = \{\alpha \in 2^{\mathbb{N}} : s \prec \alpha\}$. If $\alpha \in 2^{\mathbb{N}}$ and $n \in \mathbb{N}$, we denote by $\alpha \upharpoonright n$ the finite sequence $(\alpha(0), \dots, \alpha(n-1))$ if n > 0 and for $\alpha \upharpoonright 0$ is the empty sequence. The collection of all [s] with $s \in 2^{<\omega}$ is a basis of clopen sets for $2^{\mathbb{N}}$. Let $a \in \mathsf{Fin}$ and $A \subseteq \mathbb{N}$, we denote by $a \sqsubseteq A$ if a is an initial segment of A, i.e., $a = A \cap \{0, \dots, n\}$, where $n = \max a$. For $A \subseteq \mathbb{N}$ and $m \in \mathbb{N}$, we denote by A/m the set $\{n \in A : m < n\}$ and by $A \upharpoonright m$ the set $A \cap \{0, \dots, m-1\}$.

Let X be a topological space and $x \in X$. All spaces are assumed to be regular and T_1 . A space is *crowded* if does not have isolated points. A collection \mathcal{B} of non empty open sets is *a* π -*base*, if every non empty open set contains an element of \mathcal{B} . For every point x, we use the following ideal

$$\mathcal{I}_x = \{ A \subseteq X : \ x \notin \overline{A \setminus \{x\}} \}.$$

The ideal of nowhere dense subsets of X is denoted by $\mathsf{nwd}(X)$. Now we recall some combinatorial properties of ideals. We put $A \subseteq^* B$ if $A \setminus B$ is finite.

(**p**⁺) \mathcal{I} is **p**⁺, if for every decreasing sequence $(A_n)_n$ of sets in \mathcal{I}^+ , there is $A \in \mathcal{I}^+$ such that $A \subseteq^* A_n$ for all $n \in \mathbb{N}$. Following [11], we say that \mathcal{I} is **p**⁻, if for every decreasing sequence $(A_n)_n$ of sets in \mathcal{I}^+ such that $A_n \setminus A_{n+1} \in \mathcal{I}$, there is $B \in \mathcal{I}^+$ such that $B \subseteq^* A_n$ for all n.

Download English Version:

https://daneshyari.com/en/article/10130519

Download Persian Version:

https://daneshyari.com/article/10130519

Daneshyari.com