Accepted Manuscript

Title: Catalytic hydrogenation of stearic acid over reduced NiMo catalysts: structure—activity relationship and effect of the hydrogen-donor

Authors: Shilei Ding, Zhixia Li, Fuwei Li, Zhaohe Wang, Jiangfeng Li, Tingting Zhao, Hongfei Lin, Congjin Chen

PII: S0926-860X(18)30430-7

DOI: https://doi.org/10.1016/j.apcata.2018.08.028

Reference: APCATA 16799

To appear in: Applied Catalysis A: General

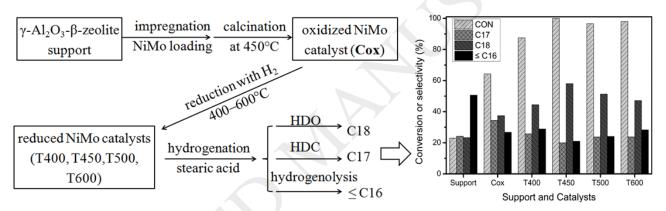
Received date: 4-4-2018 Revised date: 27-8-2018 Accepted date: 31-8-2018

Please cite this article as: Ding S, Li Z, Li F, Wang Z, Li J, Zhao T, Lin H, Chen C, Catalytic hydrogenation of stearic acid over reduced NiMo catalysts: structure–activity relationship and effect of the hydrogen-donor, *Applied Catalysis A, General* (2018), https://doi.org/10.1016/j.apcata.2018.08.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Catalytic hydrogenation of stearic acid over reduced NiMo catalysts: structure—activity relationship and effect of the hydrogen-donor


Shilei Ding^a, Zhixia Li^{a,*}, Fuwei Li^a, Zhaohe Wang^a, Jiangfeng Li^a, Tingting Zhao^a, Hongfei Lin^b, Congjin Chen^a

^aSchool of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China

^bGuangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China

*Corresponding author. Z. Li; Tel:+86 771 3274209; E-mail address: zhixiali@hotmail.com

Graphical Abstract

Highlights

- 1. H₂-reduced NiMo catalyst is used for catalytic hydrogenation of stearic acid.
- 2. Reduction treatment helps produce more reducible metal species in catalyst.
- 3. High H₂ pressure promotes conversion and the formation of C18 hydrocarbons.
- 4. Tetralin exerts different hydrogen-donating effect in H₂ and N₂ atmosphere.

Abstract: Reduced NiMo catalysts were prepared by loading NiMo elements on a γ -Al₂O₃-β-zeolite composite support, followed by reduction with hydrogen at temperatures in the range of 400–600 °C. The hydrogenation activities were investigated through treatment of stearic acid (SA), and were compared with those obtained with the composite support and the oxidized NiMo catalyst (Cox). In the tested reduction temperature range, the catalyst reduced at 450°C (T450) achieved the highest conversion (close to 100%) and C18 hydrocarbon selectivity (58.0%), which were much higher than the results obtained over the composite support and Cox. Reduction treatment contributed to

Download English Version:

https://daneshyari.com/en/article/10130682

Download Persian Version:

https://daneshyari.com/article/10130682

Daneshyari.com