ELSEVIER

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Thermal and mechanical analysis of a sodium-cooled solar receiver operating under a novel heliostat aiming point strategy

Tim Conroy^{a,*}, Maurice N. Collins^a, James Fisher^b, Ronan Grimes^a

^a Stokes Laboratories, Bernal Institute, School of Engineering, University of Limerick, Ireland
^b Vast Solar, Level 10, 17-19 Bridge St, Sydney, NSW 2000, Australia

HIGHLIGHTS

- A heliostat aiming strategy is developed using the simulated annealing algorithm.
- Detailed receiver thermomechanical models are used to identify optimum strategies.
- Heat flux profiles generated by the aiming strategy are input into receiver models.
- Peak heat flux can be lowered to < 10% that of a single centralised aiming point.
- Optimum target strategy exists to minimise spillage and maximise thermal performance.

ARTICLE INFO

Keywords: Solar receiver Heliostat aiming strategy Simulated annealing Sodium Thermal performance Mechanical reliability

ABSTRACT

The nature in which a solar receiver in a concentrated solar power plant interacts with an accompanying heliostat field plays a significant role in plant performance and economics. An appropriate heat flux distribution should help deliver maximum receiver thermal performance, while minimising mechanical damage - thereby maximising power production and reducing costs. The current work presents an investigation into the thermal performance and mechanical reliability of a sodium-cooled solar receiver operating under heat flux profiles generated by a novel heliostat aiming strategy. A modification of the HFLCAL model is used to generate heat flux profiles for individual heliostats in a representative plant, and simulated annealing optimisation techniques are used to produce a novel heliostat aiming strategy. The importance of giving consideration to receiver limitations under non-uniform thermal boundary conditions in the development of a heliostat aiming strategy is demonstrated in this study, with mathematical optical, thermal, and mechanical models used to complete the analysis. An investigation has been conducted for a point-in-time resulting in maximum thermal loading conditions, with theoretical modelling techniques used to calculate receiver tube temperatures for aiming strategy yielded heat flux profiles, thereby allowing for the determination of heat losses and mechanical reliability through creepfatigue damage. Results show that the simulated annealing algorithm can significantly improve heat flux homogeneity on the receiver, potentially reducing peak heat flux to less than 10% that of a single aiming point strategy, given an appropriate spillage allowance and aiming point grid size. A satisfactory configuration of spillage allowance and aiming grid size exists so as to supply maximum power to the receiver, while uniformly distributing the incident heat flux in order to meet mechanical reliability requirements. Based on the receiver design and conditions simulated in the analysis, a grid constructed of more than 81 aiming points (receiver area coverage of 32.7%), and an additional spillage allowance of 10% allows the receiver to deliver maximum power output while retaining mechanical durability through a 30 year plant life cycle.

1. Introduction

The ability of concentrated solar power (CSP) systems to store thermal energy allows for dispatchable electricity, which greatly adds to the value of the technology relative to other renewable systems [1]. CSP is expected to play a significant role in the future energy mix, forecast to contribute 12% to global electricity production by 2050 [2]. The most critical challenge associated with CSP is the production of cost effective electricity. CSP has a high levelised cost of electricity (LCOE) relative to other power generation systems, hindering it's

* Corresponding author.

E-mail address: timothy.conroy@ul.ie (T. Conroy).

https://doi.org/10.1016/j.apenergy.2018.08.113

Received 7 April 2018; Received in revised form 1 August 2018; Accepted 18 August 2018 0306-2619/ @ 2018 Elsevier Ltd. All rights reserved.

Applied Ellergy 230 (2018) 590–614	Applied Ener	rgy 230 ((2018)	590-614
------------------------------------	--------------	-----------	--------	---------

Nomenc	Nomenclature η		efficiency	
		θ	circumferential position (rad)	
Α	area (m ²)	μ	dynamic viscosity (Pas)	
AK, ψ	annealing schedule functions	ν	Poisson's ratio	
AM	aiming point matrix	ρ	density (kg/m ³)	
A_n, a_n, E	B_n, b_n Fourier coefficients	σ, τ	normal, shear stress (MPa)	
AT	annealing temperature	υ	kinematic viscosity (m ² /s)	
а	solar absorptivity	Φ_{ast}	astigmatic error (mrad)	
В	distance between elements (m)	Φ_{bq}	beam quality error (mrad)	
С	cost function	Φ_{eff}	effective error (mrad)	
$\cos \theta_i$	incident ray cosine factor	Φ_{sse}	surface slope error (mrad)	
cos rcv	receiver cosine factor	Φ_{sun}	sunshape error (mrad)	
C_p	specific heat capacity (J/kgK)	Φ_{track}	heliostat tracking error (mrad)	
Ď	heliostat slant range (m)			
D_i, D_o	inner, outer diameter (m)	Sub/super	perscript	
d	heliostat general dimension (m)			
Ε	Young's modulus (GPa)	∞	ambient conditions	
F	Fourier expression	add	additional	
Fview	view factor	aim	aiming point	
f	function of	conv	convection	
f _{att}	atmospheric attenuation factor	el	element	
$G_{0,n}$	wall temperature functions	error	convergence error	
Gr	Grashof number	f	fluid	
H, W	height, width (m)	fc, mc, n	c, nc forced, mixed, natural	
H_t , W_s	tangential, sagittal image dimension	h, n	home, neighbour	
h	heat transfer coefficient ($W/m^2 K$)	hel	heliostat	
k	thermal conductivity (W/m K)	i	iteration (aiming strategy)	
L	length (m)	in	inlet	
Lifeagl	focal length (m)	i	iteration (thermal model)	
-jocu m	mass flow rate (kg/s)	k k	iteration (re-reflection)	
n. N	number	1	losses	
nd. Nd	actual, allowable fatigue cycles	lam. turb	laminar, turbulent	
Nu Nu	Nusselt number	max, min	maximum, minimum	
P	pressure (kPa)	net	net input	
Psalact	selection probability	out	outlet/output	
Pr	Prandtl number	D	fatigue cycle type	
0	power (W)	a	creep loading condition	
~ 0″	heat flux (W/m^2)	r. θ. z.	radial, circumferential, axial	
R	random number	rad	radiation	
Re	Revnolds number	rcv	receiver	
r. r.	inside, outside radius (m)	ref. abs	reflection, absorption	
S	solution space	Si. So	inside. outside surface	
Sn	spillage (%)	th	thermal	
Δta. ta	actual, allowable time (h)	t	tube	
$\frac{-}{T}$	temperature (K)	νM	von Mises	
1				
Greek sy	mbols	Abbreviat	ions	
α	material expansion coefficient (K^{-1})	CSP	concentrated solar power	
ß	air expansion coefficient (K^{-1})	DNI	direct normal irradiance	
۲ S	Stefan-Boltzmann constant ($W/m^2 K^4$)	HTF	heat transfer fluid	
ۍ ج	emissivity	SA	simulated annealing	
	strain	0/1	simulated unitedning	
	Stun			

competitiveness in the energy market. The delivery of CSP systems with a low LCOE valuation is a function of minimising costs and maximising the performance of components in the power plant.

Central receiver systems are expected to become the dominant CSP technology of the future, largely due to high temperature and solar concentration capabilities that can yield high-efficiency thermodynamic power cycles [3]. A central tower CSP plant uses a large number of automated heliostats to concentrate solar energy onto a receiver. The receiver converts concentrated solar energy into workable thermal energy via a heat transfer fluid (HTF). The HTF is then used to generate steam to drive a turbine and generate electricity. There are numerous receiver concepts which use solid/liquid/gaseous HTF [3], however the liquid tubular design has found favour throughout the history of CSP. Liquid tubular receivers use a bank of vertically aligned tubes to shuttle a HTF between inlet and outlet headers. The HTF temperature is increased when the tubes are receptive to concentrated sunlight from the heliostat field. Liquid tubular receiver design lends from traditional heat exchanger technology [4], and is relatively straightforward in design and operation when compared to gaseous volumetric receivers and solid particle receivers. The liquid tubular Download English Version:

https://daneshyari.com/en/article/10131357

Download Persian Version:

https://daneshyari.com/article/10131357

Daneshyari.com