Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Enhanced performance of chemical looping combustion of methane by combining oxygen carriers via optimizing the stacking sequences

AppliedEnergy

Xianming Cheng^{a,b}, Kongzhai Li^{a,b,*}, Xing Zhu^a, Yonggang Wei^a, Zhouhang Li^b, Yanhui Long^{a,b}, Min Zheng^a, Dong Tian^a, Hua Wang^{a,b}

^a State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
^b Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China

HIGHLIGHTS

- CuO/SiO₂, Fe₂O₃/Al₂O₃, Mn₂O₃/ZrO₂ and NiO/ZrO₂ OCs show complementarity for CLC of methane.
- CuO/SiO₂ OC in the combinations can effectively improve the CO₂ selectivity.
- NiO/ZrO₂ OC in the combinations is beneficial to the CH₄ conversion.
- Combined OCs with a stacking sequence of CuNiFeMn or FeCuNiMn effectively enhance the CLC performance.

ARTICLE INFO

Keywords: Chemical looping combustion Activity Redox stability Combined oxygen carriers Carbon deposition

GRAPHICAL ABSTRACT

In the present work, we propose a strategy for the first time to optimize the overall performance of the CLC system by combining different types of OC sticks in particular sequences. The synergy among different OCs can maximize the advantages and circumvent the weakness of the selected OCs. The combined OCs with CuNiFeMn or FeCuNiMn stacking sequence show both greatly enhanced activity for methane complete oxidation and superior resistance to carbon deposition. The average CH_4 conversion and CO_2 selectivity 97.3% and 98.3% for the CuNiFeMn sequence and 96.9% and 95.7% for FeCuNiMn sequence, respectively.

ABSTRACT

Combination of different types of oxides is a general strategy to prepare high performance oxygen carriers (OCs) for chemical looping combustion (CLC) technology. However, the possible chemical interactions among different components during the long-term redox cycling may reduce the stability of OCs. In the present work, we physically combine different types of OC sticks (i.e., CuO/SiO₂, Fe₂O₃/Al₂O₃, Mn₂O₃/ZrO₂ and NiO/ZrO₂) in particular stacking sequences in a fixed bed reactor to improve the CLC performance. The reaction between methane and CuO is exothermic and the CuO/SiO₂ OC exhibits very high activity for methane oxidation and superior resistance to carbon deposition. It is suitable to place the CuO/SiO₂ in the front of the sequence which can sufficiently convert methane, and the heat releasing from this reaction will promote the following endothermic reactions. NiO/ZrO₂ OC also represents very high activity for CH₄ oxidation but results in serious carbon deposition. Since the reduced metallic Ni is an active catalyst for methane and to provide enough space to remove the carbon deposition via the gasification by CO₂ or H₂O generated from the front reaction. Mn₂O₃/ZrO₂ OC possesses poor activity for methane conversion but high resistance to carbon deposition, which can be used to convert unreacted methane in the end of the sequence. Fe₂O₃/Al₂O₃ OC is not an important issue due to the low activity and reaction rate. As a result, the combined OCs with a stacking sequence of CuNiFeMn or

https://doi.org/10.1016/j.apenergy.2018.08.063

Received 22 May 2018; Received in revised form 31 July 2018; Accepted 15 August 2018 0306-2619/@ 2018 Elsevier Ltd. All rights reserved.

^{*} Corresponding author at: Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China. *E-mail addresses:* kongzhai.li@foxmail.com, kongzhai.li@aliyun.com (K. Li).

FeCuNiMn show high performance in CH_4 conversion (> 97%), CO_2 selectivity (> 96%), redox stability and resistance to carbon deposition. These results make a certain reference for using the combined OCs in the large-scale CLC system.

Nomenclature		OSC	oxygen storage capacity
		OC	oxygen carrier
Abbreviations		XRD	X-ray diffraction
		BET	Brunauer, Emmett and Teller
CCS	carbon capture and sequestration	SEM	scanning electron microscopy
CLC	chemical looping combustion		
HSC	enthalpy (H), entropy (S) and heat capacity (C)	Symbols	
JCPDS	Joint Committee on Powder Diffraction Standards		
H ₂ -TPR	temperature programmed reduction of hydrogen	ΔH_R	enthalpy of reaction, kJ/mol
CH ₄ -TPR temperature programmed reduction of methane		С	concentration
NDIR	Nondispersive Infrared Radiation		
X(CH ₄)	CH ₄ conversion	Subscripts	
$\overline{\mathrm{X}}(\mathrm{CH}_4)$	average methane conversion		
$S(CO_2)$	CO ₂ selectivity	in	inlet gas
$\overline{S}(CO_2)$	average CO ₂ selectivity	out	outlet gas

1. Introduction

The rapid growth of the global economy results in the increasing demand for energy. Although new energy sources such as renewable energy and nuclear power have been in development, the limited applications make it far short of the demand for energy in modern society. Almost 80% supply of the world energy consumption in the near future will still strongly depend on traditional fossil fuels (coal, oil and natural gas) [1,2]. However, the combustion of fossil fuels will emit large amount of greenhouse gas (mainly CO_2) into the atmosphere, bringing the adverse effects on the environment. Therefore, it is of urgent necessity to decrease CO_2 emission from fossil fuel combustion to protect the environment from the greenhouse effect.

Among current and emerging technologies, Carbon Capture and Storage (CCS) can provide clean energy by capturing the carbon dioxide emissions produced from the combustion of fossil fuels in electricity generation and industrial processes, which could account for up to 19% of the total reduction in emissions needed according to the IPPC and IEA reports [3]. The main objective of CCS is to produce a high concentrated CO₂ stream that can be captured and subsequently kept in a suitable storage location for long time. However, the CCS technology will inevitably reduce energy efficiency with the increase in price of energy. In comparison to all these techniques related to CCS available with a great energy consumption and cost penalty, chemical looping combustion (CLC) is considered as the most efficient option with the lowest efficiency penalty for the inherent separation of CO₂ without any extra energy consumption [4,5].

In the CLC process, fuel reacts with a solid oxide (named oxygen carrier, OC) to produce CO_2 and H_2O , and then the reduced OC can be re-oxidized by air for cycling. In this way, oxygen is transferred from the air to the fuel via OCs. Water vapor can be easily removed by condensation to obtain pure CO_2 , avoiding the consumption of extra energy for CO_2 separation in the conventional combustion. After the regeneration of the reduced OCs by air, a clean and high-temperature spent-air stream is generated for power production. The total enthalpy change evolved from the oxidation and reduction steps is the same to the conventional combustion. The energy penalty of the CLC process for CO_2 capture is extremely low because of the avoidance of expensive gas separation unit [2,6,7].

During the last decades, massive efforts have been made to develop appropriate OCs for the CLC system. For a large scale application, the most extensively investigated OCs in literatures to date are Ni-[3,5,8-10], Cu- [11-14], Fe- [15-20] and Mn-based OCs [21-25]. The most frequently employed inert supports include Al₂O₃, SiO₂, ZrO₂, TiO₂, bentonite, etc. These supports usually not react with fuels but expected to enhance the reactivity and dispersity of active oxides and improve the long-term stability of OCs [5]. For the selection of the support, the agglomeration and interactions between the active metal and the support may influence its performance.

In most of the used Ni-based oxygen carrier, Dueso et al. [26] and Gayán et al. [27] investigated the reactivity of NiO/Al₂O₃ in fluidized bed reaction and found that the formation of NiAl₂O₄ affected negatively to the OC reactivity and CO₂ selectivity during the reduction reaction. Corbella et al. [28] investigated the NiO/TiO₂ for CLC of methane and found that the formation of NiTiO₃ is a very stable compound, which reduces the oxygen carrying and causes poor reactivity compared to free NiO. Zafar et al. [29] suggested that NiO/SiO₂ prepared by dry impregnation showed very high reactivity at lower temperature but the reactivity decreased as a function of the cycle numbers at 1173 K. Mattisson et al. [30] and Adánez et al. [31] proposed that the NiO supported by ZrO₂ exhibited high reactivity and high degree of regenerability for the CLC process.

Cu-based OCs have high reactivity and oxygen carrying capacity, but the relatively low melting point of Cu usually cause the easily sintering in the reduction step at a high temperature, leading to a drastic degradation in the cycle performance. Adánez et al. [31] investigated reactivity of CuO/Al₂O₃ for CLC of methane in fluidized bed reactor and found that it has problems of agglomeration and the reactivity reduces drastically in the redox cycling due to the formation of CuAl₂O₄. Similarly, CuO/TiO₂ tends to form CuTiO₄ complex compound, which reduces its activity in long term CLC process [32]. The use of SiO₂ as support material for CuO is also investigated [33–35]. Digeo et al. evaluated the cycle performance of CuO/SiO₂ prepared by impregnation, and they observed that CuO/SiO₂ does not degrade substantially in 100 redox cycles [31,36].

Fe-based oxygen carrier is a nature abundant and cheap material, which has the potential to fully convert gaseous fuel into a stream of CO_2 and H_2O . For Fe-based OCs, SiO_2 is regarded as incompatible support material because of the generation of unreactive iron silicates [37]. Similar with Ni- and Cu-based OCs, the use of TiO₂ as supported materials was investigated by Mattisson et al. [38], and they found that Fe₂O₃/TiO₂ show high reactivity but the available oxygen become

Download English Version:

https://daneshyari.com/en/article/10131377

Download Persian Version:

https://daneshyari.com/article/10131377

Daneshyari.com