ELSEVIER #### Contents lists available at ScienceDirect #### **Applied Energy** journal homepage: www.elsevier.com/locate/apenergy ## Adsorption breakthrough and cycling stability of carbon dioxide separation from $CO_2/N_2/H_2O$ mixture under ambient conditions using 13X and Mg-MOF-74 #### Naef A.A. Qasem*, Rached Ben-Mansour Mechanical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia KACST-TIC on CCS, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia #### HIGHLIGHTS - Adsorption separation of CO₂ from dry and humid CO₂/N₂ mixture is carried out under ambient conditions. - Experimentally validated model is applied by a user-defined-function in ANSYS Fluent. - 13X and Mg-MOF-74 are tested for breakthrough and cyclic CO2 separations. - Dehydration process before CO₂ adsorption processes is strongly recommended. - Cycling separation is recommended to be used instead of breakthrough tests. #### ARTICLE INFO # Keywords: CO_2 separation Humidity Mg-MOF-74 13X Cycling Breakthrough #### ABSTRACT Carbon dioxide and storage is an efficient method to reduce the emitted CO_2 from the burning of fossil fuels. Zeolite-based materials are conventional adsorbents used to adsorb some gasses involving carbon dioxide. Mg-MOF-74 is an eminent reticular material among adsorbents due to its good CO_2 capacity at low pressures (10–20 kPa). In this study, an experimentally validated model is used to report the $\mathrm{H}_2\mathrm{O}$ effect on CO_2 separation using 13X and Mg-MOF-74 under ambient conditions. A computational model has been developed using ANSYS Fluent program linked by user-define-function (written in C). The adsorption breakthrough results show that a humid $\mathrm{CO}_2/\mathrm{N}_2$ mixture, under 300 K, 86% RH, 101.3 kPa, could slightly reduce the CO_2 adsorption capacity by about 0.05% and 6% for 13X and Mg-MOF-74, respectively (at CO_2 adsorption breakthrough saturation). Regardless of these reductions, Mg-MOF-74 has better adsorption capacity, even under humid ambient conditions, by about 5.77 mmol/g in a comparison to 2.27 mmol/g for 13X, respectively. Cycling stability over more than 90 cycles is also simulated; and shows that, a dehydration process is recommended to be carried out before the CO_2 separation process for efficient energy consumption and sustainable adsorbents. The total recyclable amounts of adsorbed CO_2 are about 0.94 and 3.07 mmol/g for 13X and Mg-MOF-74, respectively, under 101.3 kPa adsorption, 2 kPa desorption, 86% relative humidity, and 298 K. The cyclic CO_2 separation is found to be a robust method more than the breakthrough separation to evaluate the real adsorption capacities. #### 1. Introduction ${\rm CO_2}$ separation by the adsorption technologies is growing vastly. The utmost advantage of the adsorption separation processes is the simplicity of adsorbent regeneration by means of heat, vacuum or both [1]. Carbon- and zeolite-based adsorbents are well-known materials exploited for the ${\rm CO_2}$ separation. In particular, zeolite-based adsorbents show better ${\rm CO_2}$ uptakes than activated carbons under lower operating pressures (10–20 kPa) such as NaY, 13X [2], and CNT/13X [3], whereas carbon-based adsorbents are preferred under high pressures (CO $_2$ adsorptive storage pressures > 5 bar) [4]. Metal-organic frameworks (MOFs) are a new class of novel adsorbents [5]. Specifically, MOF-74 (e.g., MOF-74(Ni, Co) [6] and MOF-74(Mg) [7]) shows a good CO $_2$ adsorption capacity and CO $_2$ over N $_2$ selectivity. Quantitatively, Mg-MOF-74 was tested to have the highest CO $_2$ adsorptive capacity under low-pressure conditions (350 mg/g at 298 K and 1 bar) [7]. ^{*} Corresponding author at: Mechanical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia. E-mail address: naefqasem@kfupm.edu.sa (N.A.A. Qasem). N.A.A. Qasem, R. Ben-Mansour Applied Energy 230 (2018) 1093–1107 | Nomenclature | | Τ
7 | operating temperature, K stress tensor, N/m ² | |--------------|---|-------------------|--| | 3 | molar concentration of gas, mol/m ³ | - | weight fraction | | p
p | specific heat capacity, J/kg·K | $\frac{y}{v}$ | velocity, m/s | | ъ
Э, d | bed diameter, particle-size, m | V | velocity, in/3 | | O_{disp} | coefficient of gas dispersion, m ² /s | Greek le | etters | | disp
g | energy of gas-phase, J/m ³ | Greek to | occor o | | g
s | energy of solid-phase, J/m ³ | ρ | gas density, kg/m ³ | | 's | enthalpy, J/kg | ϵ | porosity of adsorbent bed | | ext | coefficient of heat transfer at outer bed surface, W/m ² ·K | γ | heat capacity ratio | | int | coefficient of heat transfer at internal bed surface, W/m ² ·K | ε | thermal emissivity | | ·ιπτ
ΔΗ | adsorption heat, J/mol | μ | dynamic viscosity, Pa·s | | , | acceleration vector of gravity, m/s | η | vacuum pump efficiency | | } | flux due to diffusion, kg/m ² ·s | σ | Stefan Boltzmann coefficient, W/m ² ·K ⁴ | | 50 | constant in Toth equation, 1/Pa | τ | tortuosity | | eq | constant in Toth equation, 1/Pa | | · | | eq | thermal conductivity, W/m·K | Subscrit | ots | | L | time constant of LDF, 1/s | • | | | L
1 | mass weight, kg/mol | eff | effective | | ı. | constant in Toth equation | р | particle | | | actual adsorbed gas, mmol/g | max | maximum | | !
 * | equilibrium adsorbed gas, mmol/g | min | minimum | | m | capacity limit, mmol/g | pore | pore od adsorbent | | $Q_{\rm F}$ | inlet flow rate, m ³ /s | i | species index of gas | | 2F
) | pressure, Pa | g | gas | | t | universal gas constant, J/mol·K | S | standard conditions | | | radius, m | 0 | inlet, saturation | | Re | Reynolds number | w | wall | | ic. | time, s | | | #### 1.1. CO₂ separation under humid conditions Many studies have been conducted on developing water-stable adsorbents to be used in the $\rm CO_2$ capture processes [8]. Some materials showed a significant reduction in the $\rm CO_2$ adsorption in the presence of water while others were stable. It is found that $\rm CO_2$ recovery was minimized by 22% using 13X under 95% RH, 30 °C, and 1.2 bar [9]. However, 13X has been tested and showed an excellent stability under humid conditions [10]. The structural stability tests under humid conditions (298 K and RH < 90%) showed that HKUST-1, Mg-MOF-74, and UiO-66 ($-\rm NH_{20}$ retained a good structuration while DMOF-1, DMOF-1-NH₂, and UMCM-1 were not stable and completely lost their crystallinity [11]. A negligible drop in $\rm CO_2$ uptake was observed by testing HKUST-1 and Ni/DOBDC under humid conditions [12]. MOF-841 was, also, reported as a water and cycling stable adsorbent [13]. Despite the high CO_2 uptake of Mg-MOF-74, the presence of H_2O reduced the CO_2 capture capacity, unlike some MOFs such as HKUST-1 and MIL-101(Cr) [14]. For example, at 1 bar and 298 K, about 8.4 mmol/g CO_2 could be adsorbed by dry Mg-MOF-74; while under hydration of 6.5% and 13%, about 6.7 mmol/g and 5.4 mmol/g CO_2 could be adsorbed, respectively [14]. It is also reported that Mg-MOF-74 has higher H_2O hydrophilicity (593 mL/g at 298 K and 1 bar) than zeolite [15]. The reduction of CO_2 uptake at 373 K, 9% RH, and 101.3 kPa was addressed to be about 47% using Mg-MOF-74 [16]. The functionalization of MOFs by amine groups showed a higher CO₂ uptake under H₂O presence than those under dry conditions [17]. Amine-impregnated silicic acid composite was introduced as a candidate adsorbent for CO₂ separation having a CO₂ uptake of 4.54 mmol/g at 25 °C under 10 vol% CO₂ and 10 vol% H₂O [18]. Polyethyleneimine-(PEI)-impregnated millimeter-sized mesoporous carbon spheres (MCSs) showed an excellent stability for CO₂ capture in the presence of H₂O [19]. KFUPM-1 (polymer-adsorbent treated by amine-group) showed a higher cyclic stability and CO₂ uptake under the presence of water vapor [20]. About 0.75 cyclic CO₂ uptake was achieved using CaO/ MgO (calcium-based adsorbent) under real conditions [21]. Recently, some adsorbents were proposed to be water-stable for CO_2 post-combustion such as dmpn-Mg₂(dopbpdc) [22], NbOFFIVE-1-Ni [10], nHept-2- Mg₂(pc-dobpdc) [23], IRMOF-74-III-(CH_2NH_2)₂ [24], and ZIF-300 [25]. Notwithstanding that some MOFs exhibit water and thermal stability, there are many challenges for such adsorbents to be applicable to commercial and real-world; e.g., combining high CO_2 capacity with high CO_2/N_2 selectivity in the presence of humidity [8]. #### 1.2. Energy consumption by carbon capture processes The energy penalties due to the separation of CO_2 in power plants were estimated in the literature. The cost of avoiding CO_2 , for amine scrubbing plant integrated with natural gas combined cycles, was evaluated to be between \$82.6 and \$121.8 per tonne of CO_2 [26]. Bicarbonate-forming solvents could also be used for carbon capture with CO_2 avoid energy about $0.27 \, \text{kWh/kg} \, CO_2$ [27]. The average annual CO_2 emission rate for the integrated gasification combined cycle (IGCC) integrated with membrane CO_2 capture, was at $89 \, \text{kg} \, CO_2/\text{MWh}$ [28]. Analogous to thermodynamic cycles, the carbon pump theory was used for investigating thermodynamics and energy consumption of the TSA process [29]. Incorporating secondary materials (such as CNT) with MOFs could increase the CO_2 uptake and decrease the regeneration energy; it is found that the CO_2 uptake increased by 36% for MIL-101(Cr) [30] and about 8% for Mg-MOF-74 [31]. Among different CO_2 separation technologies, the electric adsorption separation process was addressed to be economically infeasible for CO_2 capture [32]. The effect of water vapor on the CO_2 separation using activated carbon (coconut shell Acticarb GC1200) was small, but it has a high impact on the power consumption (\sim 35%) of vacuum swing adsorption process [33]. The energy consumption of CO_2 -loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts was found to be less than a catalyst-free test by 23.3–34.2% [34]. For separating CO_2 from the atmospheric air, the energy consumption was #### Download English Version: ### https://daneshyari.com/en/article/10131480 Download Persian Version: $\underline{https://daneshyari.com/article/10131480}$ Daneshyari.com