
Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Using stochastic programming and statistical extrapolation to mitigate long-
term extreme loads in wind turbines

Yankai Caoa, Victor M. Zavalaa,⁎, Fernando D’Amatob

a Scalable Systems Laboratory, Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI 53706, USA
bGeneral Electric Global Research, 1 Research Cir, Niskayuna, NY 12309, USA

H I G H L I G H T S

• Stochastic programming and statistical extrapolation to mitigate long-term extreme loads.

• Formulations can be cast as large-scale nonlinear programming problems.

• Approach can identify controller settings in a more systematic manner.
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A B S T R A C T

We propose stochastic programming formulations to enforce mechanical load requirements in wind turbine
controller design procedures. The formulations use statistical extrapolation techniques to construct a prob-
abilistic (chance) constraint that controls the long-term probability of exceeding an extreme load threshold (as
described by the IEC-61400 standard). This approach is based on the observation that extreme loads follow a
generalized extreme value distribution, which enables an explicit algebraic representation of the probabilistic
constraint. We illustrate how to use the formulations to find design parameters for pitch angle and torque
controllers that maximize power output while constraining long-term extreme loads. We also use the formulation
to explore the ability of a hypothetical model predictive controller to mitigate extreme loads. The proposed
formulations can be cast as large-scale (but structured) nonlinear programming problems that contain up to 7.5
million variables and constraints. We show that these problems can be solved in less than 1.3 h on a multi-core
computer with existing optimization tools.

1. Introduction

Wind turbine optimization studies recently reported in the literature
have focused on blade aerodynamic design [1] and layout design in a
given spatial field [2]. From a real-time operation stand-point, recent
studies have focused on the design of architectures for control and
energy management that span a wide variety of techniques such as set-
point optimization [3,4], pitch/torque/yaw control [5], adaptive con-
trol [6], and model predictive control [7,8]. To inform these tasks, a
wide variety of models of different levels of fidelity have been used.
These models range from high-fidelity finite element models that de-
scribe the mechanical structure of the turbine [9], computational fluid
dynamics [10] that describe its aerodynamic properties to lower-fide-
lity, and lumped electromechanical models that capture aggregated
dynamical features of mechanical behavior and power generation
[7,11]. Incorporating models of increasing fidelity in optimization tasks

is a key endeavor but it is also technically challenging due to the high
computational complexity of wind turbine models. Moreover, extensive
simulations often need to be performed to anticipate and certify turbine
performance under a wide range of wind conditions that might also
span multiple timescales. Here, wind forecasting and uncertainty
quantification play a key role in characterizing potential wind condi-
tions [12–14].

Industrial wind turbines are designed to operate through a lifetime
of more than 20 years and under highly uncertain wind conditions.
Strong wind conditions can compromise the mechanical integrity of the
turbine if they are not properly handled through the control system. To
prevent structural damage and high life consumption rates, the
International Electrotechnical Commission (IEC) standards require de-
signers to certify that the turbine and the associated control system does
not exceed critical mechanical load conditions when subjected to a
multiplicity of operating scenarios. Many of these critical load
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conditions are identified using statistical load extrapolation methods
[15,16]. Such procedures seek to use limited short-term wind and load
data to assess the long-term probability of exceeding a certain load
threshold. Extrapolation techniques are based on a powerful result from
statistics known as the extreme value theorem, which states that the
maximum of a sequence of independent random variables follows a
generalized extreme value distribution. The existence of such a dis-
tribution enables the estimation of probabilities of rare, long-term
events.

Control of industrial turbines requires a careful trade-off between
power capture and compliance with extreme load requirements.
Control strategies for industrial wind turbines are typically based on
control architectures that regulate power and rotor speed by operating
generator torque and collective blade pitch angle. In addition, super-
visory control systems are used to mitigate loads and perform shut-
down procedures [17,8]. As a result, designing a viable control archi-
tecture involves extensive and time-consuming simulations with dif-
ferent controller settings that satisfy IEC requirements.

Recent research activity in wind turbine control has focused on
model predictive control (MPC) technologies. Such strategies have been
used to regulate power and speed and to enforce fatigue and load
constraints. MPC is a powerful optimization-based technology that can
aid standard controllers, as it can directly accommodate detailed tur-
bine models and constraints of different forms and with this anticipate
wind events and capture multivariable interactions. In particular, MPC
strategies can perform simultaneous blade pitch and generator torque
control while maximizing power and mitigating extreme loads. For
instance, in the work of [18] it is shown that, under an extreme gust
event, an MPC strategy can reduce the tower base moment by up to
15% compared to standard controllers. Similarly, the work of [19] uses
an MPC formulation to demonstrate that some loads can be reduced by
up to 50% under extreme gusts without negative impact on overall
power production. The MPC formulation of [11] is shown to reduce the
tower bending moment by up to 40%. The work in [20] uses multi-
objective optimization to explore the trade-off between generated
power and structural loads. MPC strategies have also been reported in
the literature that seek to overcome computational complexity by using
simplified model representations [21,7].

A limitation of MPC strategies reported in the literature is that they
analyze robustness to diverse wind scenarios on a case by case basis and
do not capture long-term extreme load constraints (as required by IEC
standards). Unfortunately, computational procedures used in long-term
statistical extrapolation are complex and not trivial to implement in
controller design and MPC formulations. Because of this, the effect of
control strategies on mechanical loads is often performed a posteriori
and not a priori (by design).

In this work, we propose stochastic programming formulations that
enforce extreme load constraints as required by IEC standards directly in
controller design procedures. The formulations exploit the observation
that the cumulative density function (CDF) associated to the extreme
value distribution has an explicit algebraic representation. Moreover,
the CDF can be easily fit to actual wind turbine mechanical load data
using moment matching. We demonstrate the benefits of the proposed
approach by determining optimal parameters for pitch and torque
controllers and by evaluating an MPC control strategy. Our results use a
medium-fidelity electromechanical wind turbine model, which allow us
to perform validation against an exhaustive search procedure. We show
that the optimization formulations, which are cast as large-scale non-
linear programs with up to 7.5 million variables, can be solved in less
than 1.3 h by using state-of-the-art gradient-based optimization solvers.

The main contribution of this work is a methodology to handle
probabilistic constraints in a scalable manner by using statistical ex-
trapolation techniques. Notably, existing approaches to handle prob-
abilistic constraints in nonlinear programming formulations are limited
in that they rely on conservative approximations that can lead to sig-
nificant performance degradation [22,23]. Our statistical extrapolation

approach avoids such approximations and enables the use of powerful
and scalable gradient-based optimization solvers. While in our study we
focus on medium-fidelity turbine models, the proposed stochastic pro-
gramming formulation is general and can accommodate higher fidelity
dynamic models and provide certifiable performance guarantees in
terms of mechanical loads. These developments provide unprecedented
capabilities to the field of wind turbine control and also show that
statistical extrapolation is a valuable tool to handle probabilistic con-
straints in other applications that present long-term fatigue/degrada-
tion (which is common in energy systems such as batteries and power
plants).

2. Optimization formulations

In this section, we present deterministic and stochastic variants for a
controller design problem. The goal of the deterministic formulation is
to compute optimal parameters for pitch and torque controllers that
maximize extracted power and that impose constraints on the max-
imum load experienced by the turbine under a known wind speed
profile. In the stochastic programming formulation, the goal is to
compute optimal controller parameters that maximize expected power
under uncertain wind conditions and enforces the satisfaction of the
maximum load using a long-term probabilistic constraint, as required
by the IEC61400-1 standard. Appendix A describes all variables, para-
meters, and units of the physical model.

2.1. Wind turbine model

We motivate our optimization formulations using a medium-fidelity
lumped wind turbine model described by the following system of dif-
ferential and algebraic equations (DAEs) [7,11]:
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Eq. (2.1a) represents the drive-train dynamics, where wr is the rotor
angular velocity, J is the total moment of inertia of the drive-train, Mz is
the aerodynamic torque, Tgen is the generator torque, and Ng is the gear
ratio. Eq. (2.1b) describes the dynamics of the tower fore-aft, where
x t( ) is the tower top displacement, F t( )z is the aerodynamic thrust
force, mTe is the tower total mass, cTe is the tower structural damping
coefficient, and kTe is the bending stiffness coefficient. The outputs of
the model, extracted power, yP, and tower base fore-aft bending mo-
ment (load), yL, are computed using Eqs. (2.1c) and (2.1d), where H is
the tower height and P1 is power loss coefficient. Aerodynamic torque
and thrust are computed using Eqs. (2.1e) and (2.1f), where ρ is the
wind density, A is the disk area, Vrel is the effective wind velocity
computed using Eq. (2.1g), λ is effective tip speed ratio computed using
Eq. (2.1h), and Ct and Cm are power and thrust coefficients computed
with Eqs. (2.1i) and (2.1j). Eqs. (2.1i) and (2.1j) are given by:
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