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A B S T R A C T

In this study, we introduce and discuss features and improvements of the well-established stiffness matrix
method that is used in simulation of wave propagation in layered media. More specifically, we present stiffness
matrices for an acoustic layer and a vertically transverse isotropic (VTI) viscoelastic soil layer. Combining these
stiffness matrices enables a straightforward technique for modeling of acousto-elastic wave propagation in
layered infinite media. In addition, we propose a technique to simulate discontinuity seismic sources, which was
not used earlier in the context of the stiffness matrix method. Finally, we propose a framework to derive a key
parameter of the absorbing boundary domain technique Perfectly Matched Layer (PML). Numerical examples are
presented in order to help understanding the features and improvements discussed in the study from the fields of
geophysics and soil dynamics. It is believed that the features and improvements discussed herein will make the
application of the stiffness matrix method even wider and more flexible.

1. Introduction

The stiffness matrix method is a well-developed approach for si-
mulating wave propagation in layered media, and has been successfully
applied to various problems during the last decades (e.g. [1–3] and
[4]). The method describes the wave motion in a layered medium in
terms of symmetric and banded matrices and with straightforward and
efficient solution procedure, producing the dynamic responses si-
multaneously at all layer interfaces and in all directions. The method
has later been extended to acoustic layers ([5,6]). The discrete version
of the stiffness matrix solution, called Thin-Layer Method (TLM), has
also been developed and applied to various problems ([7–9]). Recently,
TLM has been combined with the so-called Perfectly Matched Layer
method (PML) that enables calculation of wave motion in infinite do-
mains [10]. Despite these extensions, there are still features and im-
provements of the stiffness matrix method that could advance the use of
the method in theoretical and applied problems. The present study in-
troduces and discusses some of those features, including

• Vertically transverse isotropic (VTI) soil layer stiffness

• Discontinuity seismic sources

• Derivation of PML parameters

For completeness, first we present the acoustic layer stiffness

matrices in forms that can be used in offshore or fluid-soil-coupled
applications (e.g. seismic wave in the ocean environment). We in-
troduce three different formulations in terms of vertical displacement,
velocity potential and pressure. Each formulation has its own ad-
vantages and disadvantages. For example, the second and third for-
mulations make it straightforward to implement the so-called air-gun
source that is used as explosive acoustic source in offshore seismic
surveys. This is because the air volume injected by the air-gun is ex-
plicitly defined in the two formulations, which are shown later. On the
other hand, the first formulation is more suitable for applying vertical
disk load on seabed or within water column, because the disk load can
be represented by a term that can be set directly in the matrix equa-
tions. It is also shown that the three solutions are interrelated such that
one can be derived from the other two through relevant constitutive
laws. Next, the soil stiffness matrices for the vertically transverse iso-
tropic (VTI) layers are derived for both P-SV (in-plane) and SH (anti-
plane) wave modes. It is shown that the structure of the VTI soil layer
stiffness matrices is identical to that of the isotropic soil layer, except
that the parameters have different definitions and include the aniso-
tropy factors (a and b). Indeed, the stiffness matrix for the isotropic case
can be recovered by setting the anisotropy factors equal to 1. This al-
lows straightforward extension of existing numerical tools based on
stiffness matrices in isotropic soil to anisotropic soil. The derived
stiffness matrices are used to compute the impedance matrices of square
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foundations on anisotropic soil media and the results are compared
with their isotropic counterparts to highlight the effect of anisotropy on
the foundation impedances. Further, in order to solve the case of in-
jected (air or fluid) volume or dislocation/slip at the interface of two
layers, we formulate a technique to implement displacement dis-
continuity into the stiffness matrix method. This technique enables the
stiffness matrix method to simulate the wave fields generated by e.g. an
air-gun source or dislocation seismic sources. Finally, by means of the
continuum stiffness matrices we derive the key parameter of PML (i.e.
PML thickness, hPML) that can be used in discrete numerical approaches,
for example, in TLM, Finite Element Method (FEM) and Finite
Difference Method (FDM).

2. Stiffness matrices for fluid and anisotropic soil layers

2.1. Acoustic layer

Fig. 1 shows schematically an acoustic layer of thickness h. Wave
motion in an acoustic layer can be described with different equations.
In this study, we have chosen the particle velocity potential (ϕ). The
governing equation in the space-frequency domain has then the fol-
lowing form:

∇ + =ϕ ω
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ϕ 02
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where ∇ is the Laplacian operator, ϕ is the velocity potential, ω is the
angular frequency (in radian/s), and C is the wave velocity in the
acoustic layer.

The velocity potential (ϕ) and the vertical velocity (vz=∂ϕ/∂z) in
the wavenumber-frequency domain can be given in matrix forms as
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where A and B are unknown constants to be determined for each
acoustic layer, = −β k ω C/2 2 2 is vertical direction wavenumber in
the acoustic layer, and k is the radial (or horizontal) direction wave-
number. Note that hereby Fourier (for plane wave) or Hankel (for cy-
lindrical wave) transformation from the spatial to wavenumber domain
is already applied, and the wavenumber k replaces all the spatial de-
rivatives with respect to the horizontal (or radial) coordinate. For an
acoustic layer of finite thickness h, we can express explicitly the two
quantities of the velocity potential and the vertical velocity on the top
and bottom interfaces by setting z= h and z=0, resulting in the fol-
lowing two matrix equations.
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Subscripts 1 and 2 indicate, respectively, the quantities on the
bottom and top interfaces. By removing the unknown constant vector
{A, B}T from the two matrix equations, we can obtain the following
direct-relationship between the top and bottom interfaces (i.e. at z= h
and z=0) in terms of the velocity potential and the vertical velocity
given below
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The equations can be rearranged further as
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In the context of the layer stiffness matrix method, we need to
consider the volume change (v ) as the flux condition at an interface,
representing the injected volume via, for example, air-gun source at the
interface. In this way, we can easily assemble the layer stiffness matrix
in the sense of the finite element method. For this, we need to consider
the following relationships:
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=v vz2 2 (8)

The reason for the negative sign in the relationship for the bottom
interface (Eq. (7)) is that the volume change is defined positive as it
increases, which corresponds to the negative vertical velocity at the
bottom interface. Eq. (6) can then be re-written as
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which gives the symmetric acoustic layer stiffness matrix in terms of the
velocity potential. Furthermore, the velocity potential can be converted
into pressure according to the following constitutive law:

= −p iωρϕ (10)

By applying this, we can transform the stiffness matrix in Eq. (9)
into the following form in terms of pressure.
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In addition, we can also express the volume change (v ) in terms of
the vertical displacement (uz), and the pressure (p) in terms of the
normal traction (σz) at the interface. For this, we use a set of con-
stitutive laws of = −v iωuz1 1, =v iωuz2 2, p1 =− σz1 and p2 = σz2. Note
that we need to impose the negative sign for the bottom interface. Then,
we obtain the following stiffness matrix in terms of the vertical dis-
placements.

⎧
⎨⎩

−
−

⎫
⎬⎭

⎧
⎨⎩

⎫
⎬⎭

= ⎧
⎨⎩

⎫
⎬⎭

ρω
β βh

βh
βh

u
u

σ
σsinh

cosh 1
1 cosh

z

z

z

z

2 1

2

1

2 (12)

As shown in Eqs. (9), (11) and (12), three versions for the acoustic
layer stiffness matrix are available and are related to each other via the
appropriate constitutive laws. It should be noted that the version with
the vertical displacement (Eq. (12)) is in a form to be readily assembled
with the soil layer stiffness matrix in the finite element sense without
any additional condition to satisfy. On the other hand, the other two
versions in Eqs. (9) and (11), with velocity potential and pressure, re-
spectively, require additional interface conditions to satisfy. Such
conditions are the flux continuity at interfaces, as given below in Eqs.

Fig. 1. Acoustic layer of mass density ρ, wave velocity C and thickness h whose
motion is expressed by the particle velocity potential ϕ. Note that two flux
boundary conditions at z=0 and h are given in terms of volume change v .
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