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A B S T R A C T

This paper presents a numerical approach to evaluate the damping properties of a stay cable with an external
viscous damper. The idea is to model the cable by using non-linear corotational beam elements and to study
small vibrations around the static deformed equilibrium configuration. This gives a complex eigenvalue problem
from which the modal damping ratios can be calculated. The performance of the proposed method is assessed
through two numerical applications. Compared with the analytical methods based on differential equations
widely used in the literature, the proposed non-linear finite element approach has the advantages that the effect
of the sag is considered in an accurate way and that there is no limitation regarding the number and the value of
the structural parameters that can be introduced in the model.

1. Introduction

The problem of defining an optimal external damper for cables in
cable-stayed bridges has been the subject of intense research the last
decades. Two key contributions in this topic are the works of Uno et al.
[1] who introduced the notion of non-dimensional damping coefficient
and the work of Pacheco et al. [2] who presented the universal curves
relating the modal damping ratio with damper size, damper location,
mode number and cable parameters. These works were followed by
Krenk [3] who proposed accurate asymptotic approximation of the
damping ratio. In all these contributions, the cable is considered as a
horizontal taut without bending stiffness. The effects of the inclination
of the cable, the sag and the flexural rigidity were introduced and
studied by Tabatabai and Mehrabi [4], Krenk and Nielsen [5] and
Hoang and Fujino [6]. The influence of the stiffness at the supports and
at the damper support was considered by Krenk and Hogsberg [7] and
Fujino and Hoang [8]. Other aspects, such as three dimensional vi-
brations (Yu and Xu [9], Xu and Yu [10]) and clamped supports (Main
and Jones [11,12]) were also studied. Alternative designs with two
dampers (Hoang and Fujino [13]) and horizontal damper at a support
(Jiang, Li and Lu [14]) were proposed. In most of these studies, the
mathematical solution was based on the differential equation of the
problem and a complex eigenvalue analysis. A different approach was
proposed by Cheng et al. [15] and Fournier and Cheng [16]. The idea
was to model the cable using finite beam elements and to determine the
damping by applying a displacement perturbation and studying the free
vibrations. Finally, the works of Wang et al. [17] and Weber et al. [18]
who proposed procedures to determine an optimal damper by con-
sidering several vibrations modes as well as the book of de Sá Caetano

[19] should be mentioned.
The purpose of this paper is to introduce a different approach to

determine the modal damping coefficients for stay cables equipped with
external dampers. The idea is to use a non-linear finite element model
with corotational 2D beam elements. First, the static deformed equili-
brium configuration of the cable subjected to its own weight is calcu-
lated. Then, small vibrations are considered and a linearization of the
dynamic equilibrium equations around the deformed static equilibrium
position is performed. This leads to a complex eigenvalue analysis from
which the damping ratio from each mode can be obtained. The idea of
using discrete models to investigate the placement and size of discrete
dampers was also used by Main and Krenk in the context of multi-story
shear buildings [20]. In that case, both the stiffness and mass matrices
of the structure are constant and a different numerical method was
used. An approximate solution was obtained as an interpolation be-
tween the solutions of two limiting eigenproblems: the undamped ei-
genproblem and the constrained eigenproblem in which each damper is
replaced with a rigid link.

Compared with the previous finite element approaches proposed in
[15,16], the present methodology does not require to first excite the
model with a certain mode shape and then to calculate and process the
response by time integration. Compared with the solutions based on
differential equations, one advantage of the present methodology is that
the static deformation of the cable (i.e. the sag) can be considered in a
very accurate way. Another advantage of the finite element approach is
that there is no restriction regarding the model of the cable. For ex-
ample, there is no limitation regarding the number and the position of
the external dampers or regarding the value of the flexural stiffness; the
boundary conditions can be easily changed from simply supported to
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clamped; the stiffness at the cable support and at the damper support
can be introduced without any difficulties.

The organization of the paper is as follows. In Section 2, the cor-
otational 2D beam non-linear finite element is briefly described. This
formulation is not new and more details can be found in the literature.
The numerical method is addressed in Section 3. First, the procedure to
calculate the static deformed equilibrium configuration of the cable is
presented. Then, the linearization of the dynamic equilibrium equations
and the calculation of the modal damping ratios using an eigenvalue
analysis are explained. Numerical applications are presented in Section
4 and conclusions are derived in Section 5.

2. Finite element formulation

The purpose of this section is to describe briefly the corotational
non-linear 2D beam formulation used in the paper. The details re-
garding the derivation of the element can be found in [21].

The idea of the corotational method, see Fig. 1 is to decompose the
motion of the element in two steps. The first step is a rigid body motion
defined by the global translation (u1,w1) of the node 1 and the rigid
rotation α. This rigid motion defines a local coordinate system (xl,zl)
which continuously rotates and translates with the element. The second
step consists of a deformation in the local coordinate system. Assuming
that the length of the element is properly chosen, the deformational
part of the motion is always small relative to the local axes. Conse-
quently, the local deformations can be expressed in a simple way.

The vectors of global and local nodal displacements are defined by
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The local displacements are calculated by using
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where lo and ln denote the initial and current lengths of the element and
α= β− βo.

Differentiation of the above equations gives the transformation
matrix B as

= =
⎡

⎣
⎢
⎢

− −
−
−

−
−

⎤

⎦
⎥
⎥

δ
c s

s l c l
s l c l

c s
s l c l
s l c l

p Bp B
0

/ / 1
/ / 0

0
/ / 0
/ / 1

l g n n

n n

n n

n n

with c= cos β and s= sin β.
The relation between the local internal force vector fl and the global

one fg is obtained by equating the virtual work in both systems:
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which by introduction of the transformation matrix B gives
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Differentiation of the above equation gives after some work the
global tangent stiffness matrix as
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where N, M1 and M2 are the components of fl and
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Several alternatives are available for the definition of the local
formulation. In the present work, a local shallow arch Bernoulli element
is taken. The longitudinal strain is defined as
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A linear interpolation is used for the local axial displacement u and a
cubic interpolation is used for the local transversal displacement w. The
local internal force vector fl and local tangent stiffness matrix Kl are
then obtained by taking the gradient and the hessian of the strain en-
ergy. This operation is performed analytically in Maple (see e.g. [22]).
For the dynamic term, the classical linear Bernoulli mass matrix is taken
for the global mass matrix of the element. As shown in [22], with re-
latively fine meshes, a constant global mass matrix gives very accurate
results in non-linear problems.

3. Numerical procedure

3.1. Static deformed configuration

The first step of the numerical procedure is to use the non-linear
finite element model to calculate the static deformed configuration of
the cable when it is loaded by its own weight. This configuration must
give a specific and known tension force T at the upper support. For that,
the initial (i.e. without loading) configuration of the cable is a straight
line, see Fig. 2. At the left support, the translations are fixed whereas at
the right support, only the transversal translation is fixed. The static
deformed configuration is then calculated in two equilibrium steps. In
the first one, only the tension force T is applied. In the second one, the
own weight, modelled as vertical forces at the nodes, is added. It can be
observed that due to the low bending stiffness of the cable, it is not
possible to apply the own weight to the initial unstressed cable. For the
second step, the equilibrium equations are solved using Newton-
Raphson iterations. Once the static deformed configuration has been
obtained, the axial translation at the right support is fixed in order to
perform the dynamic analysis.

3.2. Dynamic analysis

The dynamic model and its parameters are shown in Fig. 2.
Let uo denote the nodal displacement vector calculated in the static

step. The non-linear equilibrium equations defining the deformed static
configuration can be written as

Fig. 1. Cotorational beam element.
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