
Contents lists available at ScienceDirect

Thin-Walled Structures

journal homepage: www.elsevier.com/locate/tws

Full length article

Constrained spline Finite Strip Method for thin-walled members with open
and closed cross-sections

M. Djelil, N. Djafour, M. Matallah, M. Djafour⁎

RISAM, University of Tlemcen, B.P. 230, Tlemcen 13000, Algeria

A R T I C L E I N F O

Keywords:
Elastic buckling
Thin-walled member
Modal decomposition
spline Finite Strip Method
constrained spline Finite Strip Method

A B S T R A C T

The present paper aims at introducing the constrained spline Finite Strip Method (csFSM). The proposed ap-
proach is basically a spline Finite Strip Method (spline FSM) that allows the modal decomposition. Similarly to
the constrained Finite Strip Method (cFSM), some mechanical assumptions are made in order to constrain the
general spline FSM model to buckle in specific modes, for example to enforce the member to buckle in the local-
plate mode, or distortional mode. Derivation of matrices that define the distortional (D) and global (G) modes for
thin-walled members with unbranched open and closed cross-sections is the main objective of this paper. To
define these subspaces, a standard practice is followed which consists in forming RGD, the constraint matrix of
the combined GD space, then, RG and RD the constraint matrices of pure global and distortional buckling modes,
respectively. Mechanical criteria are used to derive RGD and RG matrices, while orthogonality conditions are
used to derive RD matrix. The implementation of the mechanical criteria is done by using FEM procedure rather
than the cFSM one. Moreover, some practical aspects on how to constrain a spline FSM model are also discussed,
including how to force the torsional mode of closed cross-sections. Numerical examples of modal decomposition
are provided for a column - beam problem, with standard boundary conditions. The distortional and global
buckling loads obtained are found to be in good agreement with those calculated via the cFSM and the
Generalized Beam Theory (GBT). The paper concludes with a discussion on the applicability of csFSM in cold-
formed steel member design.

1. Introduction

In order to examine and understand the complicated behaviour of a
structural member, it is generally preferable to use a practical method,
which consists in decomposing the complex phenomenon in less com-
plicated ones. This complex phenomenon is transformed into a series of
phenomena easier to understand. As a consequence, the deformations
of a beam or a column member with thin-walls are frequently classified
into more straightforward but still much more significant deformation
categories, i.e. global, distortional, local-plate and other categories,
which present some distinctive characteristics of the deformations.

The deformations of thin-walled members, such as cold-formed steel
ones, are often categorized into specific classes; they can be global (G),
distortional (D), local-plate (L), shear (S) and transverse extension (T).
Classes G, D and L are the most significant ones in several practical
cases.

It was found that the modal decomposition of the behaviour of a
thin-walled member is particularly advantageous in understanding and
investigating the stability behaviour. This behaviour, which is due to its

thin-walled nature, i.e. high slenderness of the structure, is encountered
in many practical situations. The classification is also employed in ca-
pacity prediction; it can be seen either implicitly or explicitly in current
design standards used for cold-formed steel structures, as can be seen in
[1,2]. Presently, buckling mode decomposition for thin-walled mem-
bers may easily be performed by means of the Generalized Beam Theory
(GBT) and the constrained Finite Strip Method (cFSM). The Generalized
Beam Theory has been used to show that buckling deformations can be
formally dealt with in a modal nature that automatically distinguishes
between the global, distortional, local, and other deformations, as can
be seen in [3–6]. Moreover, the Generalized Beam Theory (GBT) in-
volves the separation of the fundamental deformation modes; it makes
it possible to calculate the pure buckling mode and to measure the
modal participation in coupled modes.

Similarly to the GBT, the constrained Finite Strip Method (cFSM) is
also capable of decomposing and identifying a mode. The constrained
Finite Strip Method (cFSM) was initially suggested and formulated for
the semi-analytical Finite Strip Method (FSM) with sine-cosine long-
itudinal shape functions which are equivalent to locally and globally
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pinned-pinned end restraints of thin-walled beams or columns [7–9].
Afterwards, alternative end conditions were also considered in [10,11],
by using the trigonometric interpolation functions introduced by
Bradford and Azhari [12]. Later on, the method was made more general
in order to render it capable of handling general cross-sections [13,14].
Both the Generalized Beam Theory (GBT) and the constrained Finite
Strip Method (cFSM) are readily accessible, and can be carried out
within the free-to-use packages GBTUL [15] and CUFSM [16].

Casafont et al. [17,18] applied the constraining technique to the
shell finite element method, within the context of a commercial finite
element code, in order to investigate the decomposition of buckling
modes that is based on a shell model. Djafour et al. made an attempt to
first simplify the derivation of the constraint matrix, which defines the
combined buckling mode space formed by the global and distortional
modes [19], and then to extend the constrained Finite Strip Method
(cFSM) to study prismatic members with arbitrary cross-sections [20].
Furthermore, Becque [21] proposed a new modal decomposition
method, which is based on the polarization of the modal output towards
plate bending and membrane energies. The constrained finite element
analysis of thin-walled structural members was introduced in [22,23]
and was then applied to the linear buckling analysis of thin-walled
members with arbitrary restraints, loadings and holes [24,25].

The aim of the present paper is to improve the spline Finite Strip
Method (spline FSM) by introducing the buckling mode decomposition
capacity. The method suggested here is fully implemented in the con-
text of the spline FSM, and therefore it can be called a constrained
spline Finite Strip Method (csFSM). For the sake of a compact and clear
presentation, this paper focuses only on the global and distortional
modes for thin-walled members with unbranched open and closed
cross-sections, including the torsional mode of closed cross-sections.
The formulation of the constraining technique is detailed for members
with standard boundary conditions. Some basic examples are con-
sidered for validation and the computed global (G) and distortional (D)
buckling curves are compared with those given by the conventional
spline FSM, constrained FSM and GBT. It is to note that some results
(namely: results on the calculation of GD elastic buckling loads for
simply supported and clamped-clamped members) have already been
presented in the 6th International Conference on Coupled Instabilities
in Metal Structures [26]. This paper, thus, can be regarded as a mod-
ified and significantly extended version of [26].

It is worth mentioning that a procedure for the calculation of pure
buckling modes by means of spline FSM linear buckling analysis has
been recently presented in [27,28]. The main difference between this
procedure and the procedure proposed in the present paper is the fact
that in [27,28] the constraint matrix of the combined GD space has
been derived by using GBT basic assumptions and separated into G and
D space by using warping functions derived from GBT cross-sectional
analysis. Moreover, to deal with general boundary conditions trigono-
metric functions of Bradford and Azhari [12] have been used.

To start with and help the reader better understand the proposed
procedure, few words about the spline FSM are in order.

2. The spline Finite Strip Method

The spline Finite Strip Method (spline FSM) was developed from the
semi-analytical Finite Strip Method (FSM) originally derived by Cheung
[29]. The Finite Strip Method (FSM) was based on harmonic functions,
and proved to be an efficient tool for analysing members with constant
geometrical properties along the longitudinal direction. The spline Fi-
nite Strip Method (spline FSM) complemented the semi-analytical Fi-
nite Strip Method (FSM) by allowing more complex types of loading and
support conditions since it uses a more comprehensive set of displace-
ment functions based on splines [30].

In the formulation of the spline FSM, a typical thin-walled member
is divided into ns strips having all the length, L, of the member (Fig. 1).
The intersection line of two connecting strips is called nodal line or

simply node, and the total number of nodes is denoted as nn. As shown
in Fig. 1, each nodal line is divided into nm equal intervals by +nm 1
section knots. To define the spline function completely over the length
of the strip, two additional section knots are required which gives a
total of +nm 3 section knots per node, numbered from − 1 to +nm 1.
Each section knot has four degrees of freedom (DOFs) corresponding to
the two membrane (in-plane) DOFs, u and v, and the two flexural (out-
of-plane) DOFs, w and θ. Consequently, the total number of degrees of
freedom for a folded plate system is × × +nn nm(4 ( 3)), in a spline
finite strip analysis.

To derive the matrix formulation, two left-handed coordinate sys-
tems are used: global and local. The global coordinate system is denoted
as: X-Y-Z, with the Y axis parallel with the longitudinal axis of the
member. The local system, which is always associated with a strip, is
denoted as x-y-z. The x axis is parallel with the plate element, and
perpendicular to the member longitudinal axis, the y axis is parallel
with Y, and the z axis is perpendicular to the x-y plane.

The assumed displacement function of the strip is a product of a B3-
spline function along the longitudinal direction and a Hermitian func-
tion in the transverse direction. The transverse Hermitian function is a
linear polynomial for membrane displacements (u and v) and a cubic
polynomial for flexural displacements (w and θ). The displacement
functions are given by
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The parameters N1, N2, N3, N4, N5 and N6 are transverse shape
functions and ψui, ψvi, ψwi, ψθi, ψuj, ψvj, ψwi and ψθj are B3-spline re-
presentations. The expressions for the transverse shape functions are
given by
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2 in which =x x b̅ / and b is the width of the strip.

The B3-spline representations have +nm 3 local terms and they are
defined by uniform B3 spline functions, ψ y( )k and amended B3-spline
functions, ψ y̅ ( )k . Such modified functions are required to represent the
specified boundary conditions for each DOF and concerns the three first
and the last ones [31]. For instance, the B3-spline function for u DOF of
node i can be written as follows
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ψvi, ψwi, ψθi, ψuj, ψvj, ψwi and ψθj are described in the same way. The
equal section B3-spline function and its first derivatives at the section
knots are well-known, and are given in [31,32]. The plate bending and
membrane behaviours are completely uncoupled. Thus, the displace-
ment field of a strip, i.e., d(s), in the local − −x y z coordinate system,
which is interpolated from the local degrees of freedom (DOFs) of its
two nodes, can be written as follows

= u v u v w θ w θd [ ]i i j j i i j j
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or in partitioned form
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