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A B S T R A C T

Inflated membrane cones have attracted extensive research efforts in various fields owing to features such as
ultra-light weight, high packaging efficiency. The pressure effect was considered in the vibration analysis of
these structures because pressure was the main contributor to structural stiffness. Based on the virtual work
principle and Timoshenko beam theory, an improved beam model considering the pressure effect, which in-
cludes the prestress stiffness and follower force effects, was proposed for the vibration of an inflated cone. The
results calculated from the proposed model agreed strongly with the experimental results. Moreover, the pres-
sure follower force effect was investigated using different pressures and taper angles. The study proved that the
follower force effect decreased the natural frequencies in lower modes, and increased them in higher modes.

1. Introduction

Owing to their ultra-light weight, great packaging package effi-
ciency, and high deployment reliability, inflated membrane structures
have extensive applications in aerospace [1–4] and civil engineering
[5,6]. Numerous inflated structures, such as airships, inflated wings,
and certain structural components, can be regarded as inflated cones
[7]. The inflated cone vibration is easy to be affected by the inflated
pressure caused by its low structural stiffness. Accurate modal analysis
is the basis for evaluating the dynamic performance of such a structure
[8].

Jha et al. [9] indicated that the pressure effect includes the prestress
stiffness and follower force effect. The prestress stiffness effect refers to
the change in the structure's load-bearing as a result of the prestress
field induced by the pressure. The follower force effect occurs because
the pressure tends to be perpendicular to the deflected surface, and this
deflection-dependent force can change the effective stiffness of the in-
flated structure. The effects of stiffness effects on the vibration char-
acteristics of the plate, shell and membrane structure were studied in
[10–14]. Several analysis models for the prestress stiffness effect have
been proposed, including the hexagonal membrane element model [13]
and nine-node membrane element model [14]. Hu et al. [8] conducted
a numerical analysis of membrane structures considering the pre-stress
effect, and indicated that the follower force effect should be considered
in the membrane element stiffness matrix. To improve the accuracy of
inflated membrane structures, several shell and membrane models

considering the follower force effect have been established [9,15–17].
Liu and He [18] compared the natural frequency of an inflated torus
with and without the pressure follower force effect, and concluded that
the natural frequency could be reduced by approximately 25–60% as a
result of the follower force effect.

Alternatively, the beam model can provide a more efficient solution
for large space structures consisting of inflated cones, beams and tori
than the shell and membrane model. Thomas and Wielgosz [19] had
established an inflated beam theory that takes into account the geo-
metrical stiffness and follower forces effect for the deflection of the
inflated tube. In the bending and buckling analysis of inflated beams, a
beam element considering the pressure effect was proposed in the lit-
erature [20,21]. Thomas et al. [22] and Apedo et al. [23] developed a
dynamic stiffness matrix related to the natural frequency and inflation
pressure of an inflated beam.

Inflated beams with constant sections have been studied ex-
tensively, but not as much research has been conducted on inflated
cones with variable section. This study proposed an improved beam
model aimed at an inflated cone. The test and membrane models were
implemented to verify the proposed beam model (PBM). Following this,
the influences of the follower force effect on the modal characteristics
were studied, and the deviation of the test and PBM was researched.
The results demonstrated that the follower force effect had a substantial
influence on the first five bending modal frequencies, and it was sig-
nificantly greater than the gas effect on the natural frequency at a high
pressure. The lower natural frequencies were fairly reduced because of
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the consideration of the follower force effect, while the higher natural
frequencies increased by a small amount.

2. Numerical model

This section is based on the Timoshenko beam theory, and the beam
model of the inflated cone after moulding is established here. Fig. 1
illustrates a cantilever inflated cone model, which has the generatrix
equation y= f(x). The xyz represented the Cartesian coordinates, and
the x-axis indicated the axis direction of the inflated cone; with the
coordinate origin O located at the dot of the fixed end. To make the
theoretical model concise and easy to understand, this study made the
following assumptions:

(1) The cross-section of the inflated cone remained flat during the vi-
bration deformation;

(2) The initial axial internal force was constant, while the initial
bending moment and shear stress were zero; and

(3) The ratios of the y-direction displacement to the length and cross-
section rotation were the first-order small quantities, while the ratio
of the x-direction displacement to the length was a second-order
small quantity.

Based on the first assumption, the displacement vector U can be
expressed as,
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where u, v and w were the x, y and z-direction displacements of the
central point of the cross-section including point M, respectively; and θ
was the cross-section rotation around the z-axis. As the bending mode in
the xy and xz planes was identical, the 2D beam model was studied in
the xy plane. Thus, w was considered to be zero. The virtual displace-
ment of point M was obtained by the variation of Eq. (1):
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The Green–Lagrange strain E of the inflated cone can be expressed
as,
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2
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where ∇U denoted the gradient of U and ∇ UT is its transpose tensor.

2.1. Dynamic equilibrium equation

The virtual work principle was applied to establish the dynamic
equilibrium equation of the inflated cone. The virtual work equation is

+ + =δW δW δW 0a int extcc (4)

where δWacc, δWint and δWext denote the virtual work of the inertia, in-
ternal and external forces, respectively.

2.1.1. Virtual work of inflated pressure
The virtual work of the inflated pressure in the inflated cone was

analysed. The inflated pressure following moulding was stable in this
study, the pressure was considered as uniform. Moreover, based on the
third assumption, the pressure was approximated as a constant in the
vibration deformation. Unlike shell and membrane models, the inflated
pressure at the inflated cone wall cannot be applied directly in the beam
model. Therefore, the inflated pressure was introduced into the struc-
tural stiffness matrix as an influence factor. The virtual work of the
inflated pressure on the inflated cone's lateral wall and tip was then
examined. The coordinates of the arbitrary point M(x,y,z) in the lateral
wall can be expressed as
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where φ was the angle of the line G0M and the y-axis (Fig. 1(b)), and x
was the axial coordination. Based on Eq. (5), the following equation
was obtained:
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where, n was the normal vector of the inflated cone wall and ds was the
element area. Thus, the virtual work of the inflated pressure on the
lateral wall was represented as

∫ ∫⋅ ⋅ = − ⋅ ′ ⋅ − ⋅
+ ′ ⋅ + ⋅ ⋅
− ⋅ ⋅ − +

p δ ds pπ f x f x θ f x θ θ δu
f x θ f x θ θ δv

f x θ v f x θ u δθ dx

U n ( )[(2 ( ) cos ( )sin )
(2 ( ) sin ( ) cos )
( ( ) cos ( )sin (1 )) ]

l
x

x

x x

lat 0 ,

,

, , (7)

where p was the inflated pressure in the inflated cone and the in-
tegration area "lat" was the inner surface of the lateral wall. Similarly,
the virtual work of the inflated pressure on the tip was denoted as
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where, the integration area ‘tip’ was the inner surface of the tip.

2.1.2. Virtual work of internal force
The virtual work of the internal force was analysed in this section.

Based on Eq. (3), the component items Exx, Exy and Eyy of the Green-
Lagrange strain E were obtained, respectively:
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Therefore, the virtual strains were
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Fig. 1. Model of inflated cantilever cone: (a) inflated cone
and (b) cross-section.
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