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a b s t r a c t 

This paper presents an improvement of Huang’s moving knots method (Huang et al.) for solving the PDE on 

the contours of Equidistribution Principle (EP-contours). Firstly, a new moving knots strategy is generated by 

discovering a significant factor ignored (dropped) by Huang (Huang et al.). The proposed strategy ensures that 

arbitrary initial knots could asymptotically converge to the EP-contours. Then the moving knots strategy and 

PDE are simulated by using multi-quadric (MQ) quasi-interpolation step by Step (3.3, 3.4). Error estimates of the 

algorithm are given. At last, numerical experiments are provided to illustrate the validity of the algorithm. Both 

theoretical analysis and numerical results show that the proposed algorithm benefits the methods in Huang et al. 

and Wu. 

1. Introduction 

Time dependent PDEs [1] are able to describe phenomena in various 
fields, such as engineering, physics, biology, economics, etc. Supported 
by the development of the computer, the numerical methods [2] have 
become efficient ways to study such problems. In this paper, we study 
the numerical solution of the well defined time dependent PDE 

𝑢 𝑡 ( 𝑥, 𝑡 ) =  ( 𝑢 )( 𝑥, 𝑡 ) , 𝑥 ∈ [ 𝑎, 𝑏 ] , 𝑡 ∈ [0 , 𝑇 ] , (1.1) 

where  represents a differential operator involving only derivatives of 
u respect to space x (without loss of generality we take [ 𝑎, 𝑏 ] = [0 , 1] 
throughout the paper). 

Firstly, Eq. (1.1) is discretized on time with forward divided differ- 
ence method: 

𝑢 ( 𝑥, 𝑡 𝑘 +1 ) = 𝑢 ( 𝑥, 𝑡 𝑘 ) + Δ𝑡 𝑘  ( 𝑢 )( 𝑥, 𝑡 𝑘 ) , (1.2) 

Δ𝑡 𝑘 = 𝑡 𝑘 +1 − 𝑡 𝑘 is the 𝑘 th time step, then the resulting Eq. (1.2) will be 
discretized on space. 

Generally, the space discretization methods could be divided into 
two categories: the Eulerian and the Lagrangian. In the Eulerian methods 
[3] , the solutions are observed at fixed space locations, i.e., the PDE is 
simulated on fixed knots { x j , t k , u ( x j , t k )}. When the solutions of original 
PDE involve large variations, such as boundary layers and even shock 
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waves, the alternative Lagrangian methods [4,5] perform better in both 
efficiency and accuracy, since the knots 𝑥 𝑘 

𝑗 
(the j th knot on time t k ), 𝑗 = 

0 , 1 , ⋯ , 𝑁 are moved with time and always concentrated in regions with 
large variations. For instance, it is appreciated if the knots distribute 
uniformly on the arc-length of solutions at fixed time t k . 

One key feature in developing moving knots algorithms lies in formu- 
lating a satisfactory strategy for moving knots. Wherein the EP [6,7] has 
turned out to be an excellent principle. Precisely, given a function u ( x, t ), 
and by introducing a computational coordinate 𝜉, the one-to-one coor- 
dinate transformation is denoted by 𝑥 = 𝑥 ( 𝜉, 𝑡 ) with the boundary condi- 
tions 𝑥 (0 , 𝑡 ) = 0 and 𝑥 (1 , 𝑡 ) = 1 . The EP-contour is defined to be the curve 
which is solved by the following EP (1.3) when 𝜉 is a constant: 

𝐸( 𝑥 ( 𝜉, 𝑡 ) , 𝑡 ) ≐ ∫
𝑥 ( 𝜉,𝑡 ) 

0 
𝑀 ( ̃𝑥 , 𝑡 ) 𝑑 ̃𝑥 − 𝜉 ∫

1 

0 
𝑀 ( ̃𝑥 , 𝑡 ) 𝑑 ̃𝑥 = 0 , (1.3) 

where 𝑀 = 

√ 

1 + 𝑢 2 
𝑥 

is differentiation of the arc-length. Clearly, when 

𝜉𝑗 = 

𝑗 

𝑁 

, 𝑗 = 0 , 1 , ⋯ , 𝑁, the EP-contours 𝑥 𝑗 ( 𝑡 ) = 𝑥 ( 𝜉𝑗 , 𝑡 ) are equidistributed 
on function u ( x, t ). 

As pointed out by Huang [5] , a number of knots moving strategies 
were formulated for solving the PDE on the EP-contours. Tang et al. 
[8] developed the harmonic map between the original space and the 
computational space by the iteration procedure. Each iteration step was 
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to move the knots closer to the harmonic map. Levesley et al. [9] pro- 
posed the adaptive algorithm which aimed to assess the local approxi- 
mation quality and improve the error in the specified region. [10] pre- 
sented the moving knots equation by which the knots were moved along 
the characteristic line of the original PDE. Huang et al. [7] constructed 
the moving mesh PDEs (MMPDEs), which targeted to move the knots 
closer to the EP-contours on each time step. It is worth mentioning that 
Huang’s moving mesh methods were so popular in applications, that 
their codes were employed in the software MATLAB (bugersode.m). 

For the knots moving strategies mentioned above, some 
[7,8,11,12] directly focus on moving the knots closer to the EP- 
contours on fixed time step. However, they neglect maintaining the 
(nearly) equidistribution during time iterations. Once the solutions vary 
steeply with time, the (nearly) equidistribution would be destroyed 
after each time iteration. Others [10,13] target to keep the initial 
distribution, yet they forget to move the knots closer to the EP-contours 
during each time iteration. Combining those two ideas, a new strategy 
for moving knots is constructed on the basis of EP. The strategy and the 
numerical solutions are estimated step by step: 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑥 𝑘 +1 
𝑗 

= 𝑥 𝑘 
𝑗 
− 

𝐸( 𝑥 𝑘 
𝑗 
,𝑡 𝑘 ) 

𝑀( 𝑥 𝑘 
𝑗 
,𝑡 𝑘 ) 

− Δ𝑡 𝑘 
∫ 𝑥 𝑘 

𝑗 

0 𝑀 𝑡 ( ̃𝑥 ,𝑡 𝑘 ) 𝑑 ̃𝑥 − 
𝑗 

𝑁 
∫ 1 
0 𝑀 𝑡 ( ̃𝑥 ,𝑡 𝑘 ) 𝑑 ̃𝑥 

𝑀( 𝑥 𝑘 
𝑗 
,𝑡 𝑘 ) 

; (1.4) 

𝑢 ( 𝑥 𝑘 +1 
𝑗 

, 𝑡 𝑘 +1 ) = 𝑢 ( 𝑥 𝑘 +1 
𝑗 

, 𝑡 𝑘 ) + Δ𝑡 𝑘  ( 𝑢 )( 𝑥 𝑘 +1 
𝑗 

, 𝑡 𝑘 ) . (1.5) 

Early in 1994, Huang [7] has applied similar idea in constructing the 
MMPDEs. However, the terms including ‘ M t ’ were dropped because of 
their difficulty to be calculated. Without these terms, a time lag [5] al- 
ways exists, which makes the time step sizes of knots redistribution small 
in order to avoid instability and even knots tangling. The situation is 
worsen when the solutions propagate fast or vary largely according to 
time. To remedy this problem, various algorithms have been designed 
[5,14,15] . Their general idea is several sub-steps of knots redistribu- 
tions companied with one step of PDE solving. These algorithms are 
inefficient in the sense that they spend most of the computing time on 
the knots redistributions. 

In this paper, the time lag problem is settled by calculating out the 
term ‘ M t ’ exactly: based on the original PDE (1.1) , ‘ M t ’ is calculated 
precisely by transforming the time derivatives into the space derivatives, 

𝑀 𝑡 = 

𝑢 𝑥 𝑢 𝑥𝑡 √ 

1 + 𝑢 2 
𝑥 

= 

𝑢 𝑥 ( 𝑢 𝑡 ) 𝑥 √ 

1 + 𝑢 2 
𝑥 

= 

𝑢 𝑥 (  ( 𝑢 )) 𝑥 √ 

1 + 𝑢 2 
𝑥 

. (1.6) 

When the terms including ‘ M t ’ are added, the time lag disappears. As a 
result, the time step sizes of knots redistribution could be enlarged and 
the possibility of knots tangling could be reduced. It is proved that, ar- 
bitrary initial knots will asymptotically converge to the equidistributed 
case following the provided strategy. Therefore, it could simulate PDEs 
with faster propagating and steeper varying solutions. Moreover, the 
moving knots strategy is simple, robust and easy to program. Further- 
more, the present strategy benefits both the methods in Huang [5,10] . 

In this paper, the schemes (1.4) and (1.5) are estimated applying 
the MQ quasi-interpolation meshless method [10,13,16–18] . Compared 
with the mesh based methods [8,19] , which need a proper structure of 
the mesh, and require to solve the PDE after coordinate transformation, 
the MQ quasi-interpolation method gives an approximant directly with- 
out solving any large-scale linear system of equations. What’s more, it 
requires no structure of the knots, hence we can move the knots more 
freely. In addition, the PDE is solved in the original coordinate and need 
no coordinate transformation. In conclusion, the proposed algorithm is 
simple, efficient and easy to implement. The error estimates of the pro- 
posed algorithm are given. 

An outline of the paper is as follows. In Section 2 , a new moving knots 
strategy is generated in Theorem 1 on the basis of the previous strategies 
for moving knots. Then in Section 3 , the knots redistribution and PDE 
solutions are estimated step by step applying MQ quasi-interpolation. 
Numerical experiments are presented to illustrate the validity of the 

proposed method in Section 4 . Section 5 ends the paper with some con- 
clusions and remarks. 

2. The new moving knots strategy based on EP 

In this section, two classical moving knots strategies based on EP 
are recalled. On the basis of them, the new strategy for moving knots is 
developed. 

We begin this section with the introduction of EP. Given a function 
𝑢 = 𝑢 ( 𝑥, 𝑡 ) , { 𝑥 𝑗 ( 𝑡 )} 𝑁 

𝑗=0 are called equidistributed, if for fixed t , the arc- 
length of the curve u ( x, t ) on each interval is the same: 

∫
𝑥 𝑗+1 ( 𝑡 ) 

𝑥 𝑗 ( 𝑡 ) 
𝑀 ( ̃𝑥 , 𝑡 ) 𝑑 ̃𝑥 = 

1 
𝑁 

∫
1 

0 
𝑀 ( ̃𝑥 , 𝑡 ) 𝑑 ̃𝑥 , (2.1) 

𝑀 = 

√ 

1 + 𝑢 2 
𝑥 

is differentiation of the arc-length. 

Denoting the error of the equidistribution as E ( x j ( t ), t ): 

𝐸( 𝑥 𝑗 ( 𝑡 ) , 𝑡 ) = ∫
𝑥 𝑗 ( 𝑡 ) 

0 
𝑀 ( ̃𝑥 , 𝑡 ) 𝑑 ̃𝑥 − 

𝑗 

𝑁 

∫
1 

0 
𝑀 ( ̃𝑥 , 𝑡 ) 𝑑 ̃𝑥 , (2.2) 

then searching the roots of Eq. (2.1) is equivalent to finding the zero 
points of function (2.2) . 

When applying EP to construct the moving knots strategy, one aims 
to solve the exact zero points of function (2.2) [5] . However, The non- 
linearity of function (2.2) makes the calculation difficult. Hence, a vari- 
ety of techniques are established to simulate the zero points of function 
(2.2) , for more information, we refer readers to the book [5] and the 
citations therein. 

2.1. The classical moving knots strategies 

In this subsection, two typical moving knots strategies are intro- 
duced: Huang’s MMPDEs [7] and the moving knots equation in [10] . 

2.1.1. Huang’s MMPDEs 

Huang [7] gave the continuous form of the EP (2.3) by introducing a 
computational coordinate 𝜉. Then a one-to-one coordinate transforma- 
tion is denoted as 𝑥 = 𝑥 ( 𝜉, 𝑡 ) with the boundary conditions 𝑥 (0 , 𝑡 ) = 0 and 
𝑥 (1 , 𝑡 ) = 1 . 

𝐸( 𝑥 ( 𝜉, 𝑡 ) , 𝑡 ) = ∫
𝑥 ( 𝜉,𝑡 ) 

0 
𝑀 ( ̃𝑥 , 𝑡 ) 𝑑 ̃𝑥 − 𝜉 ∫

1 

0 
𝑀 ( ̃𝑥 , 𝑡 ) 𝑑 ̃𝑥 = 0 . (2.3) 

Clearly, when 𝜉𝑗 = 

𝑗 

𝑁 

, 𝑗 = 0 , 1 , … , 𝑁, the EP-contours 𝑥 𝑗 ( 𝑡 ) = 𝑥 ( 𝜉𝑗 , 𝑡 ) are 
equidistributed on the surface u ( x, t ). 

On the basis of the continuous form of the EP (2.3) , Huang [7] pro- 
posed a series of moving knots strategies named MMPDE 1–7 separately, 
the typical one is named MMPDE 5: 

𝑥 𝑘 +1 
𝑗 

= 𝑥 𝑘 
𝑗 
− 

Δ𝑡 𝑘 
𝜏

𝜕 

𝜕𝜉

( 

𝑀 

𝜕𝑥 

𝜕𝜉

) 

, (2.4) 

where 𝜏 is a small constant and 
Δ𝑡 𝑘 
𝜏

is the relaxation factor. 
To facilitate a better understanding of MMPDE 5, we divide 

Eq. (2.4) into two iterations: ⎧ ⎪ ⎨ ⎪ ⎩ 
𝑥 
𝑘, (1) 
𝑗 

= 𝑥 𝑘 
𝑗 
− 

Δ𝑡 𝑘 
𝜏

𝐸 𝜉𝜉( 𝑥 𝑘 𝑗 , 𝑡 𝑘 ) , (2 . 5a) 

𝑥 𝑘 +1 
𝑗 

= 𝑥 
𝑘, (1) 
𝑗 

. (2 . 5b) 

𝑥 
𝑘, (1) 
𝑗 

is the intermediate term. 
It is observed that, Eq. (2.5a) is taken one step of Iteration Method 

on 𝐸 𝜉𝜉 = 0 at time t k . Hence (2.5a) derives the knots 𝑥 𝑘, (1) 
𝑗 

closer to the 

equidistributed case on u ( x, t k ). Afterward, Eq. (2.5b) let 𝑥 𝑘 +1 
𝑗 

be equal 

to 𝑥 𝑘, (1) 
𝑗 

directly. This implies that, once the solution u ( x, t ) varies largely 

from t k to 𝑡 𝑘 +1 , 𝑥 
𝑘 +1 
𝑗 

may be even farther from the equidistributed knots 
on 𝑢 ( 𝑥, 𝑡 𝑘 +1 ) . That is the reason why the time step sizes of Huang’s MM- 
PDEs [7] should be small, otherwise, instability and even knots tangling 
phenomena would emerge. 
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