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a b s t r a c t 

In this paper, we describe an efficient analytic evaluation of boundary integral operators. Firstly, we concentrate 
on a novel approach based on the simultaneous evaluation of all three linear shape functions defined on a bound- 
ary triangle. This results in a speedup of 2.35–3.15 times compared to the old approach of separate evaluations. 
In the second part we comment on the OpenMP parallelized and vectorized implementation of the suggested 
formulae. The employed code optimizations include techniques such as data alignment and padding, array-of- 
structures to structure-of-arrays data transformation, or unit-strided memory accesses. The presented scalability 
results, with respect both to the number of threads employed and the width of the SIMD register obtained on 
an Intel ® Xeon TM processor and two generations of the Intel ® Xeon Phi TM family (co)processors, validate the 
performed optimizations and show that vectorization needs to be an inherent part of modern scientific codes. 

1. Introduction 

The computation of matrix entries and the evaluation of represen- 
tation formula are of major importance in boundary element methods 
(BEM). On one hand, the often singular integrals have to be computed 
with sufficient accuracy to preserve important matrix properties and the 
optimal order of convergence. On the other hand, the computation has 
to be fast as this is a major part of the total computational time, even for 
fast boundary element methods. A popular approach is to use explicit 
analytical formulae for the evaluation of boundary integral operators. 
The related formulae have been topic of research for decades; recent 
publications discussing the topic include [1–10] . For approaches avoid- 
ing singular integrals see, e.g., [11–13] . In most cases, the formulae are 
provided for plane triangles and the kernel |𝑥 − 𝑦 |−1 and its derivatives. 
As the formulae are exact, they are obviously related. However, the 
knowledge of a formula is just part of the story as certain geometric 
settings lead to special cases in its evaluation which have to be handled 
with extra care in the implementation. Thus, a pure comparison of the 
formulae is not sufficient to rate the quality of the approaches. 

In this paper, we use a carefully developed and extensively tested 
implementation based on the formulae in [5,10] . We focus on the evalu- 
ation of single- and double-layer potentials of the 3D Laplace kernel and 
linear shape functions. The formulae in [5,10] suggest choosing a local 
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coordinate system in the plane triangle related to the considered linear 
shape function. Then, three independent computations are required to 
compute the integrals for the three linear shape functions of a single 
triangle. In this paper, we compute these three integrals at once, which 
reduces the computational effort to almost one third. To do so, we 
present additional analytic formulae which are related to the setting 
chosen in [5] . The formulae (2.13) and (2.14) for the double-layer 
potential with constant basis function were known but unpublished. 
The formulae (2.15) and (2.16) for the double-layer potential and 
some other linear basis function, as well as the corresponding formulae 
(2.26) and (2.28) for the single-layer potential are new in this setting. 
As we observed that all formulae of these three cases have major parts 
in common, we were able to elaborate the simultaneous computation 
of the potentials for all three linear shape functions of a triangle. These 
results are presented in Section 2.2.4 for the double-layer potential 
and in Section 2.3.4 for the single-layer potential. The results of 
Section 4.1 show good speedups for the related computational times, 
ranging from 2.35 to 3.15 with the new simultaneous computation. 

The second part of the paper is devoted to the efficient imple- 
mentation of the suggested evaluation routines for modern multi- and 
many-core (co)processors with wide SIMD registers. It has become more 
or less standard in scientific codes to utilize shared- and distributed- 
memory parallelism achieved by OpenMP and MPI, and thus to use the 
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computational power of all available cores. However, in recent years 
the theoretical peak performance of CPUs has also been rising due to 
the capabilities of vector processing units able to perform simultaneous 
computations on vectors of data. This concept, known as Single Instruc- 
tion Multiple Data (SIMD), is becoming increasingly important. Indeed, 
the newest AVX512 (Advanced Vector Extensions) instruction set is 
able to operate on 512 bits of floating-point data, which translates to 
8 double-precision operands. Neglecting in-core vectorization can thus 
reduce the performance by a factor of 8 (or even 16 in single-precision 
arithmetic). Recently, several papers have been published dealing 
with many-core vectorized implementation of numerical methods, see 
[14,15] for GP-GPU accelerated numerical assembly of BEM matrices, 
[16] for 2D BEM for the Laplace equation, [17] for efficient quadrature 
routines in the context of the finite element method (FEM), [18,19] for 
stencil-based simulations of geophysical flows, [20–22] for the perfor- 
mance of CFD codes, and [23] for the acceleration of the finite element 
tearing and interconnecting (FETI) solver. 

Vectorization can be achieved via different strategies. One option 
is the inline assembly code or compiler-specific intrinsic functions 
for compute-intensive kernels. Although these can achieve optimal 
speedup, the code is not portable between multiple architectures. A 

second option is to use wrapper libraries providing vector implementa- 
tion of common mathematical functions in several vector instructions 
sets (including, e.g., SSE4.2, AVX2, or AVX512) resulting in a portable 
implementation. In [24] we describe the application of the Vc library 
[25] to both the semi-analytic and numerical BEM assembly. The 
VCL library [26] can be used in a similar fashion. In [27] we used 
OpenMP SIMD pragmas described by the OpenMP standard [28] for the 
vectorization of the regularized numerical assembly of BEM matrices. In 
contrast to [27] , where we showed that the efficiency of this approach 
can get very close to the optimal values, in this paper we use OpenMP 
SIMD to accelerate the presented analytic evaluations. Although this 
approach is slightly less explicit than the methods mentioned above, the 
compiler is able to perform additional optimizations and can contribute 
to better performance. 

This part of the paper is structured as follows; code optimizations 
employed for the efficient parallelization and vectorization of the 
semi-analytic assembly and the exact evaluation of the representation 
formula are presented in Section 3 . In Sections 4.2 and 4.3 we provide 
results obtained on multi- and many-core architectures using the Intel 
Xeon and Xeon Phi (co)processors. The suggested rather simple thread- 
ing approach leads to optimal speedup on all tested architectures, 
see Tables 4.2 –4.4 for detailed results. For the performance of the 
vectorized code we refer to Tables 4.5 –4.7 , where one can see that 
changing the width of a SIMD vector processed simultaneously by 
vector processing units leads to significant speedups ranging from 4.95 
to 7.75 for the matrix assembly and the evaluation of the representation 
formula, respectively. Taking into account all proposed techniques, 
i.e., the simultaneous evaluation for all shape functions and OpenMP 
threading and vectorization, the speedup with respect to the scalar 
sequential version reaches up to several hundred on Xeon and Xeon Phi. 

As mentioned above, for simplicity we restrict our exposition to 
the Laplace kernel. However, the presented simultaneous evaluation 
of integral operators can be applied in the same manner for problems 
modelling wave scattering with the Helmholtz equation, see [5,10] . 
The boundary integrals are split into a singular part corresponding with 
the Laplace kernel, and a non-singular remainder that can be treated 
by a numerical scheme without further regularization. Moreover, the 
boundary element matrices related to the Lamé equation for linear 
elasticity problems can be built from sparse transformations of the 
Laplace matrices, see [5, Section C.2.3] , for analytic evaluation in frac- 
ture propagation problems also consult [29] . Thus, the parallelization 
and vectorization techniques presented here can be applied in the same 
manner for a rather broad range of engineering problems. 

Although we concentrate on the full assembly of BEM matrices in 
the presented paper, the developed techniques can easily be adapted for 

fast approaches. The adaptive cross approximation [5,30] is based on 
the full assembly of the so-called non-admissible blocks of the system 

matrix and low rank approximation of the far-field. The low rank 
approximation is built by assembling an appropriate subset of rows and 
columns building these blocks, i.e., the assembly routines are used in a 
very similar fashion. Numerical experiments comparing the paralleliza- 
tion and vectorization of full and sparsified BEM matrices have been 
presented in [27] . Similarly, the techniques presented here in the con- 
text of Galerkin approximation can be applied to collocation schemes 
without significant changes. Indeed, the numerical integration for the 
outer surface integral can be seen as an evaluation of the boundary inte- 
gral operators in collocation points – here serving as quadrature points. 
In the paper we also concentrate on intra-node optimization in shared 
memory. For large scale experiments the distributed level of parallelism 

(achieved by MPI) has to be added to the method. This can be done, 
e.g., with the boundary element tearing and interconnecting (BETI) 
domain decomposition technique [31] in connection with the ESPRESO 

library [32] developed at IT4Innovations, or with the distributed 
version of the adaptive cross approximation (ACA) method [33,34] . 

2. Analytic evaluation of singular integrals 

In the following we consider the Dirichlet boundary value problem 

for the Laplace equation in three spatial dimensions. We discuss analyti- 
cal formulae to compute the single- and double-layer potentials for plane 
triangles and linear shape functions. In particular, we present some 
analytical formulae which are new in the setting of [5, Section C.2] . 
The presented complete set of formulae allows the simultaneous com- 
putation of the integral operators for the three linear shape functions of 
a triangle at once, thus reducing the computational times significantly. 

2.1. Model problem 

In particular, we solve 

−Δ𝑢 = 0 in Ω, 𝑢 = 𝑔 on 𝜕Ω (2.1) 

where Ω ⊂ ℝ 

3 denotes a bounded Lipschitz domain and g ∈H 

1/2 ( 𝜕Ω) 
is the given Dirichlet datum. An explicit formula for the solution to 
(2.1) is given by, see, e.g., [35] , 

𝑢 ( ̃𝑥 ) = ∫𝜕Ω 𝑣 ( ̃𝑥 , 𝑦 ) 𝑤 ( 𝑦 ) d 𝑠 𝑦 − ∫𝜕Ω
𝜕 

𝜕𝑛 𝑦 
𝑣 ( ̃𝑥 , 𝑦 ) 𝑔( 𝑦 ) d 𝑠 𝑦 for ̃𝑥 ∈ Ω (2.2) 

with w ≔ 𝜕 u / 𝜕 n and 𝑣 ∶ ℝ 

3 ×ℝ 

3 → ℝ 

3 denoting the fundamental 
solution to the Laplace equation in 3D, i.e., 

𝑣 ( 𝑥, 𝑦 ) ∶= 

1 
4 𝜋

1 |𝑥 − 𝑦 | . 
The unknown Neumann datum 𝑤 ∈ 𝐻 

−1∕2 ( 𝜕Ω) can be determined by 
solving the weakly singular boundary integral equation obtained from 

(2.2) by taking the limit Ω ∋ 𝑥 → 𝑥 ∈ 𝜕Ω, 

𝑉 𝑤 ( 𝑥 ) = 

1 
2 
𝑔( 𝑥 ) + 𝐾𝑔( 𝑥 ) for almost all 𝑥 ∈ 𝜕Ω (2.3) 

with the single- and double-layer boundary integral operators 

𝑉 ∶ 𝐻 

−1∕2 ( 𝜕Ω) → 𝐻 

1∕2 ( 𝜕Ω) , 𝑉 𝑤 ( 𝑥 ) ∶= ∫𝜕Ω 𝑣 ( 𝑥, 𝑦 ) 𝑤 ( 𝑦 ) d 𝑠 𝑦 , 

𝐾 ∶ 𝐻 

1∕2 ( 𝜕Ω) → 𝐻 

1∕2 ( 𝜕 Ω) , 𝐾𝑔 ( 𝑥 ) ∶= ∫𝜕Ω
𝜕 

𝜕𝑛 𝑦 
𝑣 ( 𝑥, 𝑦 ) 𝑔( 𝑦 ) d 𝑠 𝑦 , 

respectively. Both boundary integral operators are linear and bounded, 
and the 𝐻 

−1∕2 ( 𝜕Ω) -ellipticity of V ensures unique solvability of (2.3) , 
see, e.g., [35] . The variational formulation equivalent to the equa- 
tion (2.3) used for the discretization by the boundary element method 
reads 

⟨𝑉 𝑤, 𝑡 ⟩𝜕Ω = 

⟨ (1 
2 
𝐼 + 𝐾 

)
𝑔, 𝑡 

⟩ 
𝜕Ω

for all 𝑡 ∈ 𝐻 

−1∕2 ( 𝜕Ω) (2.4) 
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