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Image sequences allow visualizing dynamic systems and understanding their intrinsic characteristics. 
One first component of this dynamics is retrieved from the estimation of the velocity displayed on 
the sequence. Motion estimation has been extensively studied in the literature of image processing 
and computer vision. In this paper, we step beyond the traditional optical flow methods and address 
the problem of recovering the acceleration from the whole temporal sequence. This issue has been 
poorly investigated, even if this is of major importance for major data types, such as fluid flow images. 
Acceleration is defined as the space–time function resulting from the forces applied to the studied 
system. To estimate its value, we propose a variational approach where an energy function is designed 
to model both the motion and the acceleration fields. The contributions of the paper are twofold: first, 
we introduce a unified variational formulation of motion and acceleration under space–time constraints; 
second, we describe the minimization scheme, which allows retrieving the estimations, and provide the 
full information on the discretization schemes. Last, experiments illustrate the potentiality of the method 
on synthetic and real image sequences, visualizing fluid-like flows, where direct and precise calculation 
of acceleration is of primary importance.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Estimating motion from images is of major importance for a 
large range of environmental applications. Analyzing satellite ac-
quisitions of Sea Surface Temperature allows, for instance, to de-
tect precursors of extreme events and better mitigate their risks. 
Processing fish-eye sky images acquired on a solar plant allows 
forecasting the solar irradiance and accurately estimating the pho-
tovoltaic production.

Motion estimation on fluid flows has been extensively discussed 
in, for instance, Heitz et al. [1]. The underlying problems of the 
fluid flows context are quite different of those that are usually oc-
curring in most computer vision applications. One major difference 
is that these fluid flows data require a dense in space and dense 
in time description and can not be summarized by local features, 
which are tracked in time. This is the spirit of the research work 
described in the following and it explains most of the technical 
choices that were done when implementing the approach.
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Acceleration estimation seems having been seldom investigated 
in the state-of-the-art, whatever the type of image acquisitions. 
In Arnspang [2], the assumption of Lagrangian constancy of both 
brightness and velocity is used to estimate motion and acceleration 
on three consecutive frames. However, these fields are supposed to 
be locally constant. Hu and Ahuja [3] propose an approach, which 
is not based on the image data but on a set of characteristics 
points tracked on consecutive acquisitions, and compute the affine 
and projective parameters of motion and a constant, in space and 
time, acceleration. Staković et al. [4] determine the motion and 
acceleration fields using Fourier-based techniques, but motion is 
restricted to be locally translational and acceleration is also locally 
constant.

Multi-frame motion has been the focus of a large number of re-
search works. Tomasi and Kanade [5] and Irani [6] extend the pio-
neer work of Lucas and Kanade [7] in a multi-frame context. Under 
the assumption of locally stationary motion, they prove that mo-
tion fields are included in a low rank subspace. The main advan-
tage of their methods is the robustness to noise and the capability 
to solve the aperture problem without applying any regularization 
process. In the same spirit, Garg et al. [8] also compute non rigid 
motion fields from their projection on a low rank subspace. Ricco 
and Tomasi [9] define a multi-frame method to assess long-range 
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motion and detect the occlusions by computing the Lagrangian tra-
jectories of points on the low rank subspace. Garg et al. [10] apply 
the same concept for image registration purpose. The major lim-
itation of this whole set of these methods, compared with our 
approach, is the poor representation of the dynamics, with a small 
size basis, which is precise enough for their application domains 
but fails for the complex motion fields of fluid flows. This remark 
originates our motivation for implementing a dynamic model I M
describing both the temporal evolution of the motion field and the 
transport of the image data.

Accuracy of motion estimation, both in direction and intensity 
is also a key component for forecasting images at short temporal 
horizon and mitigating future events. This concern is particularly 
crucial for environmental issues as, for instance, the short-term 
forecast of heavy rain or clear sky, which are required for miti-
gating flashfloods or estimating and regulating the production of 
photovoltaic energy. However, the pertinence of the forecasted im-
ages relies on the full knowledge of the space–time dynamics, and 
not only on the motion field component. In the operational appli-
cation which is considered for the discussion given in the paper, 
such forecast is applied with a temporal sliding-window setting: a 
set of images is first processed for estimating motion and accel-
eration, which are further used for forecasting the image data at 
a given temporal horizon, then the temporal window is iteratively 
incremented in time. In such context, the only knowledge of mo-
tion snapshots is not sufficient for a correct forecast of the future 
motion fields and a dense in time model of motion and accelera-
tion is strongly required.

For a large range of environmental systems observed with im-
age data, mathematical models of the physical processes are avail-
able. This is well-known for meteorology and oceanography for 
instance, which are both based on the Navier–Stokes equations. 
These physical laws should then be used when processing the im-
age acquisitions, in order to allow a full and reliable estimation of 
the dynamics. The paper describes the design of an image model 
that includes evolution equations for all studied quantities such 
as image brightness, velocity and acceleration. Then, we discuss 
the estimation of the full dynamics, motion and acceleration, with 
a data assimilation approach, which originates in the meteorol-
ogy forecasting community and is currently used in meteorological 
institutes all over the world. These data assimilation techniques 
appeared in the last decade in the image processing and computer 
vision community for estimating motion from image sequences, 
as for instance in Papadakis et al. [11,12], Titaud et al. [13] and 
Béréziat et al. [14]. One primary output of these approaches is an 
elegant solution of the well-known aperture ambiguity by an ex-
plicit model of motion. But the paper makes a strong improvement, 
compared to these state-of-the-art methods, as it allows the esti-
mation of forces applied to the system, or equivalently the simulta-
neous estimation of motion and acceleration. For an accurate com-
parison with the literature, we highlight that Papadakis et al. [11,
12] or Heas et al. [15] also include an additional quantity, which 
could be viewed as an acceleration term. However, their mathe-
matical formulation constrains this quantity to be small or sparse, 
consequently suppressing any physical interpretation. In this pa-
per, we focus on a class of approaches named 4D-Var in the data 
assimilation literature that are relying on an adjoint formulation. 
However ensemble-based approaches are also possible [16]. Our 
approach solves the following inverse problem: given N O images 
IO
l , l = 1, · · · , N O , the motion and acceleration fields are estimated 

under the constraint of the given dynamic model, expressed by 
partial differential equations, and space–time regularity properties. 
Compared to the previously mentioned motion estimation meth-
ods that rely on data assimilation, an additional equation is added 
to the model, which corresponds to the description of the accel-
eration. If this equation includes a parametric formulation of the 

acceleration [17], the problem reduces to the estimation of the 
parameters values without any strong difficulty. But, in the gen-
eral case of fluid-flows images, the parametric assumption is not 
valid on the data and a variational data assimilation technique is 
applied for estimating a dense acceleration field [18]. A specific 
energy is then designed whose control variables are the values of 
all variables at the beginning of the studied temporal interval and 
the acceleration field at each space–time value. The optimization is 
conducted by computing iteratively the values of the energy and of 
its gradient, which are the input of the optimization solver, named 
BFGS [19]. The outputs are the motion and acceleration fields on a 
continuous temporal interval.

Paper Organization: Section 2 discusses the problem faced in the 
paper, provides the basic notations and describes the mathematical 
content. The variational data assimilation technique is then shortly 
discussed in Section 3, which provides the main mathematical and 
technical components for understanding the approach. Our method 
is extensively described in Section 4 for allowing interested Read-
ers to reproduce the full implementation and the experiments. 
Results are thoroughly discussed in Section 5, and Section 6 con-
cludes the paper and gives indications on future work.

2. Mathematical setting

In order to improve the understanding of our approach, all 
symbols included in the paper are the same for continuous and 
discrete descriptions, even if not always fully correct from the 
mathematical point of view.

� is the image domain and [0, T] is the temporal interval on 
which images are acquired and processed. The set A = � × [0,T]
is the studied space–time domain. If a function f is defined on A, 
f (x, t) denotes the value at point x and time t and f (t) describes 
the spatial field at time t .

The motion vector at point x and time t is written w(x, t) =(
u(x, t) v(x, t)

)T
with .T being the transpose operator and u and 

v the horizontal and vertical components. The acceleration is writ-
ten a(x, t) = (

au(x, t) av(x, t)
)T .

〈 f , g〉 denotes the scalar product of functions f and g in the 
continuous domain (or in the discrete domain) and verifies:

〈 f , g〉 =
∫
�

f (x)g(x)dx (1)

A discrete sequence of images IO
l , l = 1, · · · , N O , is available 

and processed for estimating motion and acceleration. IO
l is ac-

quired at time tl and is a snapshot of the continuous function IO , 
defined on A, with values IO (x, tl).

As pointed out in the introduction, our approach estimates 
motion and acceleration from images and is based on a dy-
namic model I M. A state vector X is first defined on A: X(x, t) =(

u(x, t) v(x, t) I(x, t)
)T

, which includes the two components u
and v of the velocity w and a synthetic image I. The function I sat-
isfies the same physical and mathematical properties than the real 
image acquisitions. It is initialized with the first image I O

1 , at the 
beginning of the studied temporal interval, and transported by the 
motion field w(x, t). If this transport is correctly performed by the 
estimated motion field, the brightness values I(x, t) should be al-
most identical to the image values IO

l (x) at each acquisition time 
tl . Consequently, our method estimates motion and acceleration by 
forcing the image function I to be almost identical to the observed 
images I O

l .
The model I M, expressing the evolution of the state vector, is 

defined by partial differential equations regulating the time evo-
lution of w, a and I. The motion and acceleration functions are 
mathematically linked by:
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