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a b s t r a c t 

In this paper, 1-bit compressive sensing with improved reconstruction algorithms based on the fixed- 

point continuation (FPC) method is investigated. By introducing appropriate modifications to the conven- 

tional FPC- � 2 algorithm, the improved algorithms enjoy several advantages simultaneously. First, the prior 

knowledge of sparsity level is not required. Second, with a one-sided � 1 -norm to impose consistency, 

the performance of the proposed FPC- � 1 algorithm offers better performance than the previous FPC- � 2 
algorithm. Third, by incorporating an adaptive outlier pursuit (AOP) to the FPC- � 1 algorithm, the result- 

ing FPC-AOP- � 1 algorithm achieves improved robustness against noise. Numerical results are provided to 

demonstrate the effectiveness and superiority of the proposed algorithm. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Compressive sensing (CS) is known to be a powerful signal ac- 

quisition method in which high dimensional signals can be esti- 

mated from a set of relatively less measurements [1] . Taking the 

sparsity of the signal structure into account, CS successfully re- 

duces the sampling-rate requirement to stably recover sparse sig- 

nals. Under the CS framework, we acquire a signal x ∈ R 

N via the 

linear measurements 

y = �x (1) 

where � ∈ R 

M×N is the sampling matrix with M � N and satisfies 

the restricted isometry property (RIP) [2] , x has only K non-zero 

coefficients, and y ∈ R 

M denotes the acquired measurements. 

In practice, the quantization process after the measurement is 

generally unavoidable, which means that CS measurements must 

be quantized from a real value to a discrete value. Many recon- 

struction techniques which address CS quantization have been pro- 

posed, and in general these techniques model the quantization er- 

ror as additive measurement noise. Recent advances in Quantized- 

CS theory have led to an increasing interest for studying the 1- 

bit quantization case [3,4] . As an extreme case of CS, 1-bit CS pre- 

serves only the sign information of the measurements, which sig- 

nificantly reduce the complexity as well as cost of hardware imple- 

mentation (the quantizer is just a comparator). Besides, 1-bit CS is 

more robust against nonlinear distortions, and in certain situations 
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it can perform even better than conventional methods [5] . Since 

only the sign information is recorded, the performance of 1-bit CS 

relies on the number of measurements. The number of measure- 

ments can be larger than the dimension of the signal, which is dif- 

ferent from regular CS. 

In 1-bit CS, measurements of the N -dimension signal x can be 

written as 

y = sign ( �x ) (2) 

where y = [ y 1 , y 2 , . . . , y M 

] T ∈ {−1 , 1 } M consists of the binary mea- 

surements, and the operator sign ( · ) is the sign function applied 

to component-wise on �x , i.e., sign ( z ) equals 1 if z > 0 and −1 

otherwise for any z ∈ R . Since only the signs of real-valued mea- 

surements are preserved, scaling x will not make changes on the 

measurements. In other words, the amplitude information are lost 

due to the 1-bit quantization, the norm of x cannot be recovered 

from the binary measurements. To this end, a unit energy con- 

straint ‖ x ‖ 2 = 1 can be imposed. The meaning of signal recovery 

can be explained as finding the optimal value partitioned by ran- 

dom hyperplanes. With the unit energy constraint used, the feasi- 

ble set is reduced from the N -dimension space to the unit sphere, 

and consequently the speed and the performance of reconstruction 

are both improved. 

One of the earliest reconstruction algorithms for 1-bit CS was 

proposed by Boufounos and Baraniuk in 2008 in [6] , where a one- 

sided � 2 -norm is utilized to impose consistency and a fixed-point 

continuation (FPC) algorithm [7] is employed for reconstruction. 

The consistent reconstruction means that the quantized measure- 

ment y i , i = 1 , . . . , M, have the same sign information with the cor- 

responding recovered measurements [ �ˆ x ] i , where ˆ x is the recov- 
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ered signal. While the FPC-based algorithm is effective in adapting 

some optimization methods to the unit norm constraint, it exhibits 

relatively poor performance. Nevertheless, the FPC-based algorithm 

does not require sparsity level as prior knowledge, which is a 

desired feature in practical applications. In order to improve the 

reconstruction performance, a variety of 1-bit compressive sens- 

ing algorithms have been proposed, such as matching sign pursuit 

(MSP) [8] , binary iterative hard thresholding (BIHT) [9] and History 

algorithm [10] . Although achieving good performance, these algo- 

rithms need the sparsity level as an input. 

Another challenge to 1-bit CS is the robustness problem in 

noisy environments. In noisy scenarios, the binary measurements 

are randomly perturbed, and the so-called sign-flips seriously de- 

grade recovery performance. Towards this end, several approaches 

have been proposed. For instance, Yan introduced a modified ver- 

sion of BIHT, referred to as adaptive outlier pursuit (AOP), which 

is robust against bit flips [11] . Movahed proposed a noise-adaptive 

renormalized fixed point iteration (NAFRPI) algorithm that embed- 

ded the AOP technique into the FPC algorithm [12] . Plan devel- 

oped a convex optimization method regarding noisy 1-bit com- 

pressed sensing [13] . It was demonstrated that the algorithm can 

work with a general notion of noise and error for both exactly and 

approximately sparse signals. Based on Plan’s model, Zhang et al. 

developed an efficient Passive algorithm with closed-form solution, 

which improves the recovery performance [14] . Note that these al- 

gorithms either require the knowledge of sparsity level or exhibit 

limited performance. 

Motivated by the limitations of the aforementioned approaches, 

in this paper, improved algorithms are proposed for 1-bit CS by 

modifying the FPC- � 2 algorithm. The main contribution of this pa- 

per is to provide a simple but valid algorithm to achieve state-of- 

the-art performance when sparsity is unknown. The proposed al- 

gorithms utilize a one-sided � 1 -norm to impose consistency, and 

the performance of the proposed algorithms can be remarkably 

improved compared to the existing algorithms. More importantly, 

the proposed algorithms do not require the knowledge of sparsity 

level. Although the one-sided � 1 -norm is also suggested in BIHT- � 1 
algorithm, the one-sided � 1 -norm has not appear in any sparsity- 

free algorithms, to our knowledge. The sparsity-free feature will be 

greatly useful in real applications. In addition, robustness against 

noise can be well guaranteed based on an AOP scheme. The effec- 

tiveness and superior performance of the proposed algorithm are 

demonstrated by numerical results. 

2. Problem formulation and FPC- � 2 algorithm 

Following the typical CS framework, in order to recover the sig- 

nal from 1-bit measurements, we enforce sparsity by minimizing 

the � 1 -norm of the reconstructed signal, i.e., ‖ x ‖ 1 . Moreover, with 

the 1-bit quantization, the signs of the quantized measurement 

and real value are the same. In other words, we have 

y � �x � 0 (3) 

where � and � denote element-wise product and element-wise 

inequality, respectively, and 0 is a vector with all entries equal 

to zero. Note that (3) can also be written as written as Y�x � 0 , 

where Y = diag(y ) denotes a diagonal matrix with the measure- 

ment signs on the main diagonal. For notational simplicity, let us 

define Z as 

Z � Y�. (4) 

As a result, the following problem can be formulated for signal re- 

construction: 

min 

x 
‖ x ‖ 1 

s.t. Zx � 0 

‖ x ‖ 2 = 1 . 

(5) 

It is seen that besides the consistency constraint, an additional en- 

ergy constraint ‖ x ‖ 2 = 1 is imposed for the purpose of avoiding 

the trivial solution x = 0 . Obviously, the problem (5) is noncon- 

vex. To this end, Boufounos and Baraniuk [6] proposed to relax the 

problem by introducing a one-sided quadratic cost function f ( x ) as 

min 

x 
‖ x ‖ 1 + λ

∑ 

i 

f ( [ Zx ] i ) 

s.t. ‖ x ‖ 2 = 1 

(6) 

where λ is a relaxation parameter, [ · ] i denotes the i th entry of a 

vector, and f ( x ) is given by 

f (x ) = 

{
0 , if x ≥ 0 

x 2 / 2 , otherwise 
(7) 

Note that 
∑ 

i f ( [ Zx ] i ) is a barrier function, as λ tends to infinity, 

solutions to the problems (5) and (6) will be the same. In order 

to solve the problem (6) , the FPC algorithm [7] can be employed 

by computing the one-sided � 2 -norm penalty on the unite sphere 

‖ x ‖ 2 = 1 followed by a renormalization step [6] . This results in the 

FPC- � 2 algorithm. 

It is seen that the FPC- � 2 algorithm imposes consistency by 

using a one-sided quadratic penalty function f ( x ). Naturally, one 

might expect that a different penalty function would lead to dif- 

ferent performance. This leaves us the possibility to improve the 

performance by choosing a more appropriate function f ( x ). Fur- 

thermore, in practice, during the acquisition as well as transmis- 

sion process, measurements are always contaminated by noise, 

which would make the 1-bit measurements (signs) flipped, and 

hence, degrade the reconstruction performance. Motivated by these 

facts, modifications will be made to the FPC- � 2 algorithm so as to 

achieve improved and robust reconstruction. 

3. Proposed FPC- � 1 algorithms 

3.1. Noiseless 1-bit measurements 

As mentioned earlier, the existing FPC- � 2 algorithm [6] enforces 

consistency by using a one-side quadratic penalty function (7) and 

corresponding objective 
∑ 

i f ( [ Zx ] i ) , which can be expressed as a 

one-sided � 2 -norm as 
∑ 

i f ( [ Zx ] i ) = 

1 
2 ‖ [ Zx ] −‖ 2 

2 
, where [ ·] − denotes 

the negative function, i.e., [ x ] − = (x − | x | ) / 2 . As a matter of fact, in 

order to impose consistency, we can also use the following one- 

sided linear function: 

f (x ) = 

{
0 , if x ≥ 0 

| x | , otherwise 
(8) 

and the corresponding one-sided � 1 -norm objective function ∑ 

i 

f ( [ Zx ] i ) = ‖ [ Zx ] −‖ 1 (9) 

More importantly, as discussed in [9] , one-sided � 1 -norm (related 

to hinge-loss) is superior to the one-sided � 2 -norm (related to 

square loss) in the context of binary classification, which also en- 

forces the same consistency function as in (3) . This motivates us 

to employ the one-sided � 1 -norm for performance improvement. 

Specifically, the following problem is proposed for 1-bit CS recon- 

struction: 

min 

x 
‖ x ‖ 1 + λ‖ [ Zx ] −‖ 1 

s.t. ‖ x ‖ 2 = 1 

(10) 

To solve the problem (10) , the FPC algorithm can be employed. 

The FPC algorithm was originally proposed to solve the optimiza- 

tion problems with the following form 

min 

x 
‖ x ‖ 1 + λϕ(x ) (11) 
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