
Speech Communication 103 (2018) 27–36 

Contents lists available at ScienceDirect 

Speech Communication 

journal homepage: www.elsevier.com/locate/specom 

Phonetic subspace features for improved query by example spoken 

term detection 

Dhananjay Ram 

a , b , ∗, Afsaneh Asaei a , Hervé Bourlard 

a , b 

a Idiap Research Institute, Martigny, Switzerland 
b Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 

a r t i c l e i n f o 

Article history: 

Received 6 December 2017 

Revised 25 April 2018 

Accepted 13 July 2018 

Available online 8 August 2018 

Keywords: 

Deep neural network 

Phone posterior 

Phonological posterior 

Sparse representation 

Dictionary learning 

Query by example 

Spoken term detection 

a b s t r a c t 

This paper addresses the problem of detecting speech utterances from a large audio archive using a sim- 

ple spoken query, hence referring to this problem as “Query by Example Spoken Term Detection” (QbE- 

STD). This still open pattern matching problem has been addressed in different contexts, often based 

on variants of the Dynamic Time Warping (DTW) algorithm. In the work reported here, we exploit Deep 

Neural Networks (DNN) and the so inferred phone posteriors to better model the phonetic subspaces and, 

consequently, improve the QbE-STD performance. Those phone posteriors have indeed been shown to 

properly model the union of the underlying low-dimensional phonetic subspaces. Exploiting this property, 

we investigate here two methods relying on sparse modeling and linguistic knowledge of sub-phonetic 

components. Sparse modeling characterizes the phonetic subspaces through a dictionary for sparse cod- 

ing. Projection of the phone posteriors through reconstruction on the corresponding subspaces using their 

sparse representation enhance those phone posteriors. On the other hand, linguistic knowledge driven 

sub-phonetic structures are identified using phonological posteriors which consists of the probabilities of 

phone attributes estimated by DNNs, resulting in a new set of feature vectors. These phonological poste- 

riors provide complementary information and a distance fusion method is proposed to integrate informa- 

tion from phone and phonological posterior features. Both posterior features are used for query detection 

using DTW and evaluated on AMI database. We demonstrate that the subspace enhanced phone pos- 

teriors obtained using sparse reconstruction outperforms the conventional DNN posteriors. The distance 

fusion technique gives further improvement in QbE-STD performance. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Query by Example Spoken Term Detection (QbE-STD) refers to 

the task of detecting all audio documents from a database such 

that the documents contain a spoken query provided by a user. 

This enables the users to search over spoken audio archives us- 

ing their own speech. The primary difference between QbE-STD 

and keyword spotting is that the user provides one or more ex- 

amples of a spoken query instead of a textual query. In general, 

the query examples as well as test utterances can be spoken by 

different speakers in varying acoustic conditions without any con- 

straints on the language and corresponding vocabulary. Since no 

training data is required nor provided, QbE-STD is a particular case 

of a zero-resource task. 
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A QbE-STD system is useful for searching through audio data 

generated by news channels, radio broadcasts, internet etc. These 

audio contents are produced everyday in multiple languages by 

a large number of diverse users. Due to the lack of knowledge 

about the language of interest and corresponding training data, it 

is difficult to build an automatic speech recognition (ASR) system 

and integrate it to a text based retrieval system to perform QbE- 

STD ( Lee et al., 2015 ). Therefore, recent advances in QbE-STD are 

largely dominated by template matching techniques for its supe- 

rior performance in zero-resource condition ( Anguera et al., 2014; 

Rodriguez-Fuentes et al., 2014 ). The template based QbE-STD sys- 

tem primarily involves two steps: (1) extraction of feature vec- 

tors from the spoken query and the test audio, and (2) align- 

ment of the query and test features using dynamic time warp- 

ing (DTW) ( Rabiner et al., 1978 ) or one of its variants ( Müller, 

2007; Zhang and Glass, 2009 ). Phone posterior features (poste- 

rior probabilities of a set of phonetic classes) ( Hazen et al., 2009; 

Rodriguez-Fuentes et al., 2014 ) and bottleneck features (represen- 

tation obtained from the bottleneck layer of a deep neural net- 
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work) ( Szöke et al., 2014; Chen et al., 2017 ) have been successful 

for QbE-STD. These features are extracted from deep neural net- 

works (DNN) trained using multiple well-resourced languages. The 

bottleneck features can also be extracted in an unsupervised man- 

ner using labels generated from clustering techniques ( Chen et al., 

2016 ). 

Our earlier attempts at QbE-STD rely on low-dimensional 

subspace structure of speech signal ( Ram et al., 2015; 2016; 

2017; 2018a ). This structure of speech can be attributed to the 

constrained configuration of the human speech production sys- 

tem, leading to the generation of speech signals lying on low- 

dimensional, non-linear manifolds ( Deng, 2004; King et al., 2007 ). 

The low-dimensional structure is exploited using sparse represen- 

tation of speech data and QbE-STD is cast as a subspace detection 

problem between query and non-query speech ( Ram et al., 2015; 

2016; 2018a ). This property of speech has also been exploited to 

perform robust speech recognition ( Sainath et al., 2011; Gemmeke 

et al., 2011 ) as well as enhanced acoustic modeling ( Dighe et al., 

2016b ). Our method presented a faster approach than template 

matching, however it lacked a framework to capture the tempo- 

ral information inherent to speech. In contrast, we propose here to 

exploit the low-dimensional properties to obtain a better represen- 

tation of the speech signal, before performing QbE-STD using DTW 

based template matching. In this way, we exploit the temporal in- 

formation as well as low-dimensional structure of speech signal. 

To achieve this goal, we propose a data-driven and a knowledge- 

based approach to obtain better representation of speech and a fu- 

sion technique to combine information from different kinds of rep- 

resentations as discussed below. 

(i) Phonetic subspace representation - A data-driven approach 

( Section 4 ): We propose to use sparse modeling as an 

unsupervised data-driven method to characterize the 

low-dimensional structures of sub-phonetic compo- 

nents ( Elhamifar and Vidal, 2013; Rish and Grabarnik, 

2014 ). To that end, we model the underlying phonetic 

subspaces using dictionary learning for sparse coding. The 

dictionaries are used to obtain sparse representation of the 

phone posteriors and we project them onto the phonetic 

subspaces through reconstruction. This approach leads to 

subspace enhanced phone posteriors such that the query 

and test posteriors are represented on a common subspace 

and reduces the effect of unstructured phonetic variations. 

(ii) Phonetic subspace representation - A knowledge-based ap- 

proach ( Section 5 ): Alternative to the data-driven sparse 

modeling approach, we utilize linguistic knowledge for iden- 

tifying the sub-phonetic attributes or phonological fea- 

tures ( Chomsky and Halle, 1968 ). The phonological features 

are recognized as the atomic components of phone con- 

struction. The linguists define a binary mapping between 

the phone and phonological categories. We exploit DNN in 

probabilistic characterization of the phonological features, 

referred to as the phonological posteriors ( Cernak et al., 

2017 ). Due to the sub-phonetic nature of these features, 

they are less language dependent ( Lee and Siniscalchi, 2013; 

Sahraeian et al., 2015 ) and can be helpful for a zero resource 

task like QbE-STD. 

(iii) Distance fusion ( Section 6 ): The proposed representations are 

exploited for QbE-STD using the DTW method presented 

in Rodriguez-Fuentes et al. (2014) (see Section 3 for details). 

To integrate the information from multiple feature represen- 

tations, we propose to update the distance matrix for DTW 

by fusing the distances between the query and test utterance 

obtained from different kinds of feature representations. In 

contrast to Wang et al. (2013) , we use non-uniform weights 

which are optimized using development queries. 

The proposed methods are evaluated on two subsets of AMI 

database (IHM and SDM) with challenging conditions as presented 

in Section 8 . The improvements obtained by our approach over the 

baseline system indicate the significance of subspace structure of 

speech for QbE-STD. 

2. Related works 

In this section, we summarize different techniques proposed for 

QbE-STD. The first set of methods consists of a two step approach: 

feature extraction and template matching as discussed earlier. The 

spoken queries as well as test utterances can be represented us- 

ing mel frequency cepstral coefficient (MFCC) or perceptual lin- 

ear prediction (PLP) based spectral features. These spectral features 

were initially investigated for template matching task ( Sakoe and 

Chiba, 1978 ). However these features were outperformed by pos- 

terior features, which can be estimated from models trained in 

both supervised and unsupervised manner ( Hazen et al., 2009; 

Rodriguez-Fuentes et al., 2014; Zhang and Glass, 2009 ). Gaussian 

mixture model (GMM) based posteriors are estimated from a GMM 

trained in an unsupervised manner where the feature dimensions 

correspond to posterior probabilities of different Gaussian compo- 

nents in the model ( Zhang and Glass, 2009; Park and Glass, 2008 ). 

On the other hand, a deep boltzman machine (DBM) trained in 

unsupervised as well as semi-supervised manner can be used to 

extract posterior features. The unsupervised training of DBM can 

capture hierarchical structural information from unlabeled data. 

In Zhang et al. (2012) , the authors first train a DBM using unla- 

beled data and then fine tune it using small amount of labeled 

data. In another approach, GMM based posteriors were used as la- 

bels for the DBM training ( Zhang et al., 2012 ). Posteriors from DBM 

in both cases perform better than GMM posteriors for QbE-STD. 

The supervised approach to extract posterior features primarily 

relies on training a DNN using labeled data. In case of zero re- 

source languages, the DNN is first trained using data from differ- 

ent well resourced languages where the labels can indicate mono- 

phones, context dependent phones or senones ( Hazen et al., 2009; 

Rodriguez-Fuentes et al., 2014 ). The DNN is then used to extract 

posterior features to perform template matching for QbE-STD. In 

this approach, the posteriors are interpreted as a characterization 

of instantaneous content of the speech signal, irrespective of the 

underlying language ( Rodriguez-Fuentes et al., 2014 ). DNNs with 

bottleneck layer have also been trained in a similar multilingual 

setting to compute bottleneck features for QbE-STD ( Szöke et al., 

2014; Chen et al., 2017 ). 

Features extracted from the spoken query and test utterance are 

used to compute a frame-level distance matrix and a DTW algo- 

rithm is used to find the degree of similarity between them. Stan- 

dard DTW algorithm performs an end-to-end comparison between 

two temporal sequences, making it difficult to use for QbE-STD 

because the query can occur anywhere in the test utterance as a 

sub-sequence. In segmental DTW ( Park and Glass, 2008 ), the dis- 

tance matrix is segmented into overlapping diagonal bands where 

the width of the band indicates temporal distortion allowed for 

matching. But the width of each band limits its capability to deal 

with signals of widely varying speaking rate. Slope-constrained 

DTW ( Zhang and Glass, 2009 ) was proposed to deal with this prob- 

lem by penalizing the slope of warping path which maps the spo- 

ken query within a test utterance. It limits the number of frames to 

be mapped in the test audio corresponding to a frame in the query 

and vice versa. In sub-sequence DTW ( Müller, 2007 ), the cost of 

insertion is forced to be 0 in the beginning and end of a query, 

which enables the warping path to begin and end at any point in 

the test audio and finds a sub-sequence best matching the query. 

More recent approaches are aimed at minimizing the com- 

putational cost or memory footprints of the DTW based search 
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