FISEVIER

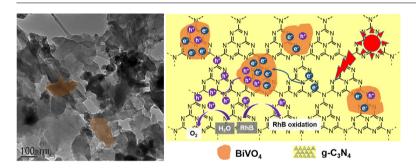
Contents lists available at ScienceDirect

## Journal of Colloid and Interface Science

journal homepage: www.elsevier.com/locate/jcis



#### Regular Article


# Construction of 2D/2D BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> nanosheet heterostructures with improved photocatalytic activity



Zhichao Sun a,b, Zhiquan Yu b, Yingya Liu a,b, Chuan Shi a, Mingshan Zhu c,\*, Anjie Wang a,b,\*

- <sup>a</sup> State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
- <sup>b</sup> Liaoning Key Laboratory of Petrochemical Technology and Equipments, Dalian University of Technology, Dalian 116024, PR China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, PR China

#### G R A P H I C A L A B S T R A C T



#### ARTICLE INFO

Article history:
Received 15 June 2018
Revised 14 August 2018
Accepted 22 August 2018
Available online 23 August 2018

Keywords: 2D/2D BiVO<sub>4</sub> g-C<sub>3</sub>N<sub>4</sub> Heterostructure Photocatalysis

#### ABSTRACT

In this work, a two dimensional (2D)/2D BiVO $_4$ /g-C $_3$ N $_4$  heterostructure with strong interfacial interaction was successfully constructed. The as-prepared BiVO $_4$ /g-C $_3$ N $_4$  heterostructures exhibit distinctly enhanced visible light photocatalytic performance toward the degradation of Rodanmin B (RhB) and water splitting to oxygen (O $_2$ ) as compared to pristine g-C $_3$ N $_4$  and BiVO $_4$ , which can be attributed to the strong interfacial interaction and abundant 2D coupling interfaces, facilitating efficient charge separation. Among the composites with various ratios, the BiVO $_4$ -10/g-C $_3$ N $_4$  sample achieves the optimum photocatalytic activity for the degradation of RhB, and reached 15.8 and 4.3 times compared to pure g-C $_3$ N $_4$  and BiVO $_4$ . Moreover, the corresponding composite reached a high O $_2$ -production rate of 0.97  $\mu$ mol h<sup>-1</sup> under visible light irradiation, which is 12.1 and 2.8 times higher than that of pure g-C $_3$ N $_4$  and BiVO $_4$ , respectively. It was demonstrated that the efficiency of electron-hole separation has certain contribution to the photocatalytic performance over the BiVO $_4$ /g-C $_3$ N $_4$  heterostructure. The present study suggests that the unique 2D/2D BiVO $_4$ /g-C $_3$ N $_4$  hybrid nanosheets should be conducive to improve the photocatalytic performance of organic pollutant degradation and water splitting.

© 2018 Elsevier Inc. All rights reserved.

#### 1. Introduction

Semiconductor photocatalyst is a potential material to solve the pollution degradation by utilizing solar energy [1–4]. Therefore, great deals of attention have been received to exploit high efficient photocatalytic semiconductor capable of responding to visible light. Various types' photocatalysts with different morphology

<sup>\*</sup> Corresponding authors at: State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China (A. Wang).

E-mail addresses: mingshanzhu@yahoo.com (M. Zhu), ajwang@dlut.edu.cn (A. Wang).

have been developed to improve the light response range and quantum efficiency [5–7]. Among the geometry of composite material, the 2D/2D heterojunction often shows the excellent separation of electron–hole pairs due to the intimate face-to-face contact as compared to the point-to-face contact in the 0D/2D heterojunction and the line-to-face contact in the 1D/2D heterojunction, which might lead to the enhanced photocatalytic activity [8,9].

Bismuth based semiconductor has received significant interest due to its unique physical properties [10-12]. BiVO<sub>4</sub> is one of the most outstanding photocatalysts with an appropriate direct band gap of 2.4 eV for absorbing visible light [13]. However, the high recombination of photo-induced electron and hole is an obstacle to achieve an efficient photocatalytic performance. It is generally believed that coupling two or more semiconductors can reduce the recombination of photo-generated electron-hole pairs [14,15]. Graphitic carbon nitride  $(g-C_3N_4)$  is an encouraging candidate material with a suitable bandgap (2.7 eV) and 2D nanosheet structure [15-20]. A series of works have indicated that the appropriate band structure of BiVO<sub>4</sub> and g-C<sub>3</sub>N<sub>4</sub> can promote the photocatalytic activity due to the efficient photo-induced electron-holes transferring and separation between BiVO<sub>4</sub> and g-C<sub>3</sub>N<sub>4</sub> [21]. It is known that the synergistic effect between BiVO<sub>4</sub> and g-C<sub>3</sub>N<sub>4</sub> would be associated with their external morphology, which could significantly influence the photocatalytic performance [22,23]. In particular, 2D/2D multilayered hybrid nanosheets possess a much larger contact area compared to 2D/0D or 2D/1D nanomaterials that are only in point-to-point or line-to-line contact [24,25]. Thus, the larger contact interfaces between 2D/2D composite provide more effective separation of photo-generated electron-hole pairs and outstanding photocatalytic performance. Recently, various morphological types of BiVO<sub>4</sub>, such as bulk [26-28], nanorods [29], regular polyhedral structures [30,31], leaf-like nanostructures [32], agglomerated particles [33], as well as platelet-like morphologies [34], are used to be hybridized with nanosheet g-C<sub>3</sub>N<sub>4</sub>. However, to the best of our knowledge, no attempt has been made on construction of 2D/2D heterostructure with ultrathin nanosheet BiVO<sub>4</sub> and nanosheet g-C<sub>3</sub>N<sub>4</sub>, this has motivated us to take up the present study.

In this work, 2D nanosheet of BiVO<sub>4</sub> with 20–30 nm thickness was synthesized and combined with the 2D nanosheet of g-C<sub>3</sub>N<sub>4</sub> to form a heterostructure with 2D/2D morphology. The photodegradation of Rhodamine B (RhB) and water splitting to oxygen (O<sub>2</sub>) were examined under visible light irradiation. All of the composite material, except BiVO<sub>4</sub>-40/g-C<sub>3</sub>N<sub>4</sub> exhibits an enhanced performance to pristine g-C<sub>3</sub>N<sub>4</sub> and BiVO<sub>4</sub>. Among them, BiVO<sub>4</sub>-10/g-C<sub>3</sub>N<sub>4</sub> showed the highest photocatalytic activity. Electrochemical Impedance Spectroscopy (EIS) and photocurrent confirmed the efficient electron transfer between BiVO<sub>4</sub> and g-C<sub>3</sub>N<sub>4</sub>, which may due to the large interface region of 2D/2D structure. These current results may provide a new insight to build 2D/2D heterojunction photocatalyst with effective charge separation, which show a great potentiality in the application of water purification and water splitting.

#### 2. Experimental

#### 2.1. Chemicals

Bismuth nitrate pentahydrate (Bi(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O), ammonium metavanadate (NH<sub>4</sub>VO<sub>3</sub>), sodium dodecyl benzene sulfonate (SDBS), Nitric acid (65–68%), Sodium hydroxide (NaOH), N,N-Dimethylformamide (DMF), urea (H<sub>2</sub>NCONH<sub>2</sub>), Rhodamine B (RhB) Cobalt nitrate hexahydrate (Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), silver nitrate (AgNO<sub>3</sub>), ammonia aqueous solution

(25 wt%), sodium sulfate ( $Na_2SO_4$ ) and ethanol were purchased from Sinopharm Chemical Reagent Co. Ltd. (China) and used without further purification. Nafion was provided by Sigma-Aldrich Chemicals Corporation. The water used in this study was deionized and purified through a water purification system (resistivity:  $\sim 18~M\Omega$  cm).

#### 2.2. Synthesis of g-C<sub>3</sub>N<sub>4</sub> nanosheets

g- $C_3N_4$  nanosheets was prepared by thermally method under a static atmosphere [16]. 5 g of urea was placed in an alumina crucible with a cover and kept at 550 °C for 2 h with a heating rate of 2 °C min $^{-1}$ . The obtained yellowish resultant was collected and ground into fine powder as the final product.

#### 2.3. Synthesis of BiVO<sub>4</sub> nanosheets

The BiVO4 nanosheets were prepared by a hydrothermal method [35]. 1.2250 g of Bi(NO<sub>3</sub>)<sub>3</sub> 5H<sub>2</sub>O and 0.2900 g of NH<sub>4</sub>VO<sub>3</sub> was dissolved into 5 mL of 4.0 M HNO<sub>3</sub> and 2.0 M NaOH to obtain a pellucid solution, respectively. 0.1250 g of SDBS was then added into both of the above solutions with vigorous stirring for 0.5 h. After that, the two solutions were mixed to give a bisque solution under stirring, followed by an addition of 2.0 M NaOH to adjust the pH value to 7.0. After stirring for another 0.5 h, the mixture was transfered into a Teflon-lined stainless steel autoclave until 80% of the volume of the autoclave was occupied. The autoclave was heated in an oven at 200 °C for 4 h, and allowed to cool down to room temperature. The vivid yellowish precipitate was washed with distilled water and collected by centrifugation, and then dried at 100 °C for 4 h.

#### 2.4. Synthesis of 2D/2D BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> heterostructure

Four samples of  $g-C_3N_4$  hybrid with BiVO<sub>4</sub> with different BiVO<sub>4</sub>/ $g-C_3N_4$  mass ratio were prepared. In a typical process, a certain amount of  $g-C_3N_4$  was dissolved into 20 mL of DMF and held for 15 min under ultrasound. Then, a given amount of BiVO<sub>4</sub> was dispersed into the suspension solution under ultrasound for 1 h and stirring for another 12 h. The resultant solution was separated by centrifugation, washed repeatedly with water and ethanol, and dried at 60 °C for 6 h. The final hybrid was signed as BiVO<sub>4</sub>-z/g-C<sub>3</sub>N<sub>4</sub>, where z represents the mass percentage of BiVO<sub>4</sub>.

#### 2.5. Photocatalytic performance

Photodegradation experiments were performed in a quartz bottle (50 mL) at ambient temperature. In a typical experiment, 10 mg of the obtained photocatalyst was suspended in 20 mL 20 mg/L RhB aqueous solution. Before a consistent activity test, the system was kept for 30 min in the darkness under vigorous stirring to achieve an adsorption–desorption equilibrium condition. All the photocatalytic measurements were performed on a 300 W Xenon arc lamp (CEL-PF300-T8, Beijing China Education Au-light Co., Ltd). The light was cut through by a UV cutoff filter (>420 nm) before entering the reactor. The absorbance of RhB was measured by UV spectrometer (JASCO UV-550 spectrophotometer) at 554 nm after centrifugation. The degradation efficiency (%) was calculated by using the following equation:

Degradation E (%) = 
$$(C_0 - C)/C_0 \times 100\%$$

where  $C_0$  represents the concentration of RhB before irradiation process, and C represents the time dependent concentration of RhB upon irradiation process.

### Download English Version:

# https://daneshyari.com/en/article/10133145

Download Persian Version:

https://daneshyari.com/article/10133145

<u>Daneshyari.com</u>