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a b s t r a c t 

Experiments, upper bound models, and finite element simulations are used to determine forming loads needed to 

microcoin surface ripples in thin metal foils. Coining is traditionally performed in a closed die, however enclosing 

all non-patterned surfaces is difficult to directly scale down to sub-millimeter foils. We find different forming 

regimes can exist at this small scale in an open pressing configuration. We explore the effects of the metal foil 

thickness and its work hardening behavior, two primary factors controlling the microcoining ripple forming load. 

For very thin foils, the load needed to coin a ripple pattern is lower than the load needed to compress the foil 

so that the open pressing configuration behavior is effectively closed with pattern formation without thickness 

change. For moderate thickness foils, the load needed to coin significantly drops as the entire foil compresses. For 

thick foils approaching bulk materials, the pattern will not completely form as the die macroscopically indents 

into the metal. Work hardening is found to raise the forming load for the thin, effectively closed die scenario, 

however it is a secondary effect at moderate thickness. This insight is used to microcoin patterns in extremely 

hard, thin metal foils. 

1. Introduction 

Coining is an age-old process well-known for requiring large pres- 

sures to suitably form a pattern or image in the surface layer of a metal 

flat [1,2] . From a metallurgical perspective, coining represents a method 

to alter surface topology and tribological conditions. Loads required for 

pattern formation are known to depend on friction and the geometry 

of the workpiece elastic-plastic boundaries. Early coining studies con- 

sidered flow into single impressions or corners in a closed die [2–5] . 

These closed die, large single feature coining models and experiments 

showed a steep rise in mean forming pressure p m 

as pattern transfer ap- 

proached unity ( p m 

/ Y ∼4–10, where Y is the flow strength, or in these 

references, the yield strength of a non-work hardening material). Form- 

ing loads were shown to significantly decrease by coining with an open 

die geometry so that the workpiece was allowed to plastically flow si- 

multaneously in a direction away from the coining feature [1,6–11] . In 

this scenario, a shear-free “neutral plane ” exists within the workpiece 

dividing the flow into the coining feature from the flow to the outside of 

the die. Generally speaking, replacing elastic-plastic high-shear bound- 

aries with neutral planes should lower the required loads driving the 

plastic flow. In experiments on an aluminum bar, the forming pressure 

to coin a corner recess reduced from p m 

/ Y ∼4 to p m 

/ Y ∼2 just by adding 
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a relief hole in the center of the die so that metal flows both into the 

corner gap and into to the open hole [7] . 

In addition to the single feature coining studies in open and closed 

dies, there have been studies on contact and deformation of rippled 

metal surfaces. A ripple with amplitude A much smaller than wave- 

length 𝜆 is a common model used to understand rough surfaces [12] . 

The two analogous problems of crushing a rippled surface or imprint- 

ing ripples into a flat surface have been studied to predict the fractional 

area of contact 𝛼. Moore [13] and Greenwood and Rowe [14] found that 

asperities in a crushed metal cylinder’s flat surface were only smoothed 

if the cylinder was short enough for the plastic zone to extend through 

the entire workpiece thickness. Ripple pattern analysis followed with 

the goal of trying to quantitatively determine the area of contact for a 

given mean load pressure p m 

deforming a rippled surface [12,15–25] . 

When the workpiece was constrained, the plastic flow in the ripple re- 

gion was found to be similar to inverse extrusion and a steep rise in 

p m 

was needed to create a high area of plastic contact [12] , typically 

p m 

/ Y ∼4. In addition, a limiting fractional contact area was found to 

be 𝛼 ∼1/2 in unconstrained or indentation-like contact [16,17,20] . Of 

note, Ike and Makinouchi performed finite element simulations show- 

ing the large differences in asperity flattening in lateral compression (to 

mimic a constrained closed die) versus lateral tension (to mimic an open 

die scenario) [23] . Like in the open vs. closed coining research above, 
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Fig. 1. (a) Images of coined metals of different thickness, 50 μm, 1 mm, and 50 mm (b) Cross-section SEM images of metals coined at increasing load p m (c) Example 

of peak-to-valley distance PV of the coined metal obtained from a central lineout from a die patterned with three amplitudes. Inset shows a portion of a 𝛼 = 0 . 67 
coining run with the ideal 𝐴 = 5 . 0 μm, 𝜆 = 50 μm die pattern superimposed. 

they observed the forming pressure to fully flatten the asperities to drop 

to p m 

/ Y ∼2 in mild steel when mimicking an open die. 

Fueled by the portable microelectronics device market and grow- 

ing nano- and micro- research trend [26,27] , researchers have recently 

developed microcoining to coin microfeatures into sub-millimeter-sized 

foils [9,28–34] . Initial microcoining work focused on engineering die 

materials. First, softer metals were microcoined with silicon dies [9,28–

30] . Then stronger dies were made in tool steel [32] or nitrided steel dies 

that could be precision diamond turned [33–35] in order to microcoin 

harder metals ( Y ∼300 MPa, where Y is the flow stress) like stainless 

steel or tantalum. However, due to these die limitations, no microcoin- 

ing has been performed on extremely hard metals with Y > 1 GPa. The 

specific application for this later work has been to microform ripple 

patterns for materials science laser-induced compression studies [36–

38] . To field these targets, the fabrication teams must adjust forming 

conditions for different metal foil types and dimensions. There are some 

important differences that distinguish microcoining from standard coin- 

ing. First, size-dependent or texture-dependent plasticity effects can in- 

duce non-uniform deformation because the local microscale yield stress 

may vary [26,27] . In addition, formability effects can arise due to the 

relation between a strain gradient length scale and the metal and die ge- 

ometry [9] . Practically, a sub-millimeter metal workpiece is difficult to 

fully contain in a closed die traditionally needed for coining precision. 

This last point will be the focus of this study as all microcoining work 

referred to here can be considered similar to embossing [29] , i.e. uncon- 

strained or in an open die configuration. Studies have shown deviations 

in ripple forming loads larger than expected from microforming texture 

variations when varying the material source and thickness [34] . 

Based on these observations of highly sensitive microcoining forming 

loads and the need to pattern Y > 1 GPa materials, the goal of this work 

is to predict and experimentally determine microcoining loads required 

for ripple patterning in thin foils of different mechanical properties and 

dimensions. In particular we will look at low vs. high work hardening 

materials and the effect of metal foil thickness ( Fig. 1 (a)). As depicted 

in Fig. 1 (b), we show experimental coining results of pattern transfer 

progression with increasing applied pressure p m 

. Upper bound models 

and finite element simulations are used to probe the plasticity details. 

A key element to the ripple microcoining problem is deformation on 

two length scales: the macroscale problem at the length scale of the die 

R die and the microscale problem at the ripple wavelength 𝜆. The metal’s 

thickness t plays a key role in the interplay of these length scales. We will 

show that closed die containment is not required for precise patterning 

in thin foils because the patterns form as if effectively closed. Further- 

more, coining loads can be significantly reduced if a small compression 

is allowed so that open die through-thickness plasticity is achieved. We 

will use this insight to expand the microcoining process to extremely 

hard materials with a ∼GPa flow stress. 

2. Calculations: Upper bound models 

Microcoining a ripple pattern into a thin metal entails a study of two 

problems on different length scales: compression of a thin metal foil on 

the R die scale and an inverse extrusion of metal into the die ripples on 

the 𝜆 scale. In the following, we will use Kudo’s version of upper bound 

theory [39] to review the forming pressures for thin foil compression, 

and offer predictive models for closed and open die ripple coining. All 

upper bound model equations in this section are derived step-by-step in 

the Supporting Information. Briefly, each calculation requires approx- 

imating the plastic flow field as an assembly of unit rectangles with 

either smooth or full-friction boundaries (with each rectangular region 

composed of rigid-triangular velocity fields as detailed in Ref. [39] ), 

calculating the total energy dissipation, and minimizing the total en- 

ergy dissipation with respect to the geometric parameters of the plastic 

flow field (i.e. unit rectangle properties). 

By comparing the load required to compress the thin foil with the 

load required to coin, we can construct a microcoining operating plot 

as a function of the foil thickness shown in Fig. 2 (a). In the following 

section we explain the creation of this operating plot. We will use a rigid- 

plastic analysis, which should be valid when 𝛼AE ∗ / 𝜆Y > 0.1 [24,40] , 

where E ∗ is the reduced Young’s modulus, Y is the yield stress, and 
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