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a b s t r a c t 

This paper aims at introducing new performance indices for robotic manipulators in order 

to evaluate the robot stiffness at the design embodiment stage. In this regard, the calcu- 

lation of the Cartesian stiffness matrix of a manipulator is elaborated based on a matrix 

structural analysis methodology. Then, by resorting to linear algebra, four stiffness indices, 

two for translational and two for rotational deformation of the end-effector, are extracted 

from a Cartesian stiffness matrix. It is proved that the indices represent the maximum and 

the minimum value of the resistance forces or moments of a manipulator against an ex- 

erted deflection, on the end-effector. As a case study, the foregoing stiffness analysis will 

be applied on a Delta parallel robot and the corresponding stiffness indices will be derived. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

At the design embodiment level, the stiffness analysis of parallel manipulators is an essential task. In industrial pick-and- 

place operations, high-speed robot manufacturers tend to decrease moving masses to achieve high acceleration and reduce 

the operation time. However, this affects the manipulator resistance against the external forces. In robotic based machining, 

grinding, trimming etc., the manipulator is subjected to significant external forces which may lead to large deflections of 

the end-effector. In medical robotics, for example, elastic deformations due to the payload or the links weight can be very 

harmful. Moreover, stiffness analysis is also important in the design of accelerometers using microelectromechanical systems. 

In such cases, the structure is designed to provide flexibility along a desired direction and high stiffness along the remained 

directions [1,2] . 

In general, stiffness modeling of manipulators has been mainly conducted by three approaches: 1) Finite Element Anal- 

ysis (FEA), 2) Virtual Joint Method (VJM) and 3) Matrix Structural Analysis (MSA). FEA is a common method for stiffness 

analysis in which the physical model is divided into a number of finite elements and nodes. Then, the compliant relations 

between the adjacent nodes are derived and solved simultaneously. Two advantages of FEA in robotic applications are its 

high accuracy and the capability of links and joints modeling with actual shapes. However, FEA is expensive in terms of 

CPU time. Although higher number of elements leads to a better accuracy, the cost of computations is a limitation. In this 

regard, Corradini et al. analyzed the stiffness of the H4 parallel robot by FEA at one single posture, and the results have 

been verified experimentally [3] . 

The VJM approach was first introduced by Salisbury [4] , and then it is elaborated by Gosselin [5] . In this method, the 

links are considered rigid but the joints are assumed to be flexible. This lumped presentation of the manipulator stiffness, 
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adds some auxiliary virtual to the kinematic pairs with embedded virtual springs. One of the challenges of this method is 

how to define the virtual spring parameters [6] . First, the main sources of elasticity were assumed to be concentrated in the 

actuated joints and the corresponding elasticity was modeled with one-dimensional virtual springs [7–9] . Then, the flexibil- 

ity of the links are taken into account either by including additional translational and rotational virtual springs located at 

the joints [10] or using 6-dimensional virtual joints representing the flexibility of each link [11–13] . Later, the VJM approach 

was significantly improved by Pashkevich and his colleagues [14–17] . Recently, FEA was incorporated in order to calculate 

the virtual spring stiffness values [18] . Deriving the CSM in VJM, is based on deriving the force-balance equations of the 

system using the principle of virtual work. Klimchik et al. used VJM for the evaluation and identification of industrial ma- 

nipulators’ stiffness parameters [19] . This novelty increased the accuracy of VJM. Although the VJM was first introduced for 

serial manipulators, it was efficiently implemented on parallel robots as well [14,20] . However, the VJM is related to some 

difficulty in stiffness modeling of complex geometries such as parallel manipulators, e.g., for architectures with internal 

loops (or with parallelogram links), the VJM is moderately complicated [6] . 

The MSA method is similar to FEA, while, instead of dividing the physical model into a large number of elements, each 

part of the robot (e.g. link, joint and actuator) is treated as a simple structural element (e.g. beam and rod) and the stiffness 

matrix of the whole structure is obtained by calculating the Hessian of elastic potential energy of the whole system. In 

MSA, displacements of each node (manipulator’s active or passive joints) has a physical interpretation, which can be useful 

in some applications [21,22] . The main advantages of the MSA are reducing the computational expenses (compared to FEA) 

and the ability of obtaining the stiffness matrix of the structure in parametric form; this is crucial when an optimization 

of the stiffness behavior is demanded. Delbaise et al. computed the Cartesian stiffness matrix of the Delta parallel robot 

by using the classical MSA method [23] ; also, GonÃ§alves et al. employed the MSA for the stiffness analysis of the 6-RSS 

robot [24] . Cammarata and Sinatra applied the MSA method to spherical parallel machines with curved links incorporat- 

ing Curved Timoshenko beam element [25] . Cammarata has also developed an extended MSA method to include preload, 

external wrenches, flexible passive and actuated joints and deformable links inside a unified mathematical formulation [26] . 

A “small”-amplitude displacement (SAD) screw is defined in the context of screw theory, wherein a six-dimensional array 

of Plücker coordinates, of which four are independent, represent a line [27] . A screw is a line array with a pitch as the fifth 

independent parameter. The amplitude A , multiplying the screw array, is the sixth independent parameter which defines a 

twist t —point velocity and angular velocity—or a wrench w —force and moment—depending on the unit of A . The SAD screw 

is defined as u = t �t, where the product | ω| �t � 1. Elastostatic analysis of a robot characterizes the manipulator resistance 

to a SAD screw caused by an external wrench applied on the Moving Platform (MP) [28] . Matrix K which maps the small 

amplitude SAD screw into the wrench applied on the MP is referred to as the Cartesian Stiffness Matrix (CSM). Recently, 

screw theory has attracted researchers for the design of compliant mechanisms [29–31] . Angeles investigated the nature of 

the CSM, using eigenvalue problem analysis by means of screw theory [1] ; Taghvaeipour et al. introduced a formulation in 

the context of screw theory for the modeling of articulated flexible links [32] . In this regard, Zou and Angeles [2] conducted 

the stiffness analysis of a class of accelerometers by resorting to a generalized eigenvalue problem. Liu et al. [33] introduced 

a stiffness modeling approach of parallel mechanisms, by combining screw theory with the VJM. 

If the components of the SAD screw are regarded as the generalized coordinates of a mechanical system [1] , the Hessian 

matrix of the potential energy function with respect to the generalized coordinates yields the 6 × 6 stiffness matrix which is 

symmetric, positive definite or semi-definite. This matrix can be non-diagonal due to the coupling between the translational 

and rotational displacements [34] . 

With the foregoing methodologies, the 6 × 6 Cartesian stiffness matrix can be readily calculated, however, a scalar per- 

formance indicator is needed in order to clearly evaluate the stiffness of a robot at different postures, or to compare the 

stiffness of different robots at a single posture of a trajectory. Recently, different approaches were proposed by researchers; 

one set of possible candidates are the norm, determinant and trace of the CSM [5,35–37] . However, the 6 × 6 Cartesian 

stiffness matrix is composed of the 3 × 3 rotational, translational, and coupled stiffness blocks with different physical units 

[38] , and hence, the CSM does not admit a norm, determinant or trace. Moreover, the coupling prevents an independent 

translational and rotational stiffness analysis. Thus, researchers conducted a generalized eigenvalue analysis [39–41] because 

of their physical interpretation. Researchers who conducted the eigenvalue analysis of CSM, believe that the eigenvectors 

provide the directions of maximum and minimum stiffness performance [36] and the eigenvalues can be used for drawing 

graphical representations of the stiffness behavior such as stiffness ellipsoids [5,41] . However, the CSM is not homogeneous 

in terms of units and hence, the eigenvalue analysis of CSM is not invariant with respects to those units. To deal with 

this problem, some researchers split the CSM into its equivalent translational and rotational parts [32,41] . Under certain 

conditions, Angeles discussed the decoupling of the Cartesian stiffness matrix in [1] . Later, Zou and Angeles introduced a 

decoupling technique of the Cartesian stiffness matrix by means of a similarity transformation that involves only a shift of 

the inertial coordinate origin [2] . However, the proposed technique is only applicable to those Cartesian stiffness matrices 

which have a singular 3 × 3 coupling block of rank 2 or 1 [1,2] . This singularity condition exists only for some particular 

types of rigid bodies (e.g. microaccelerometers) which have flexibility along some axes and rigidity along the rest. Patter- 

son and Lipkin [42] suggested another graphical tool for a comparison of stiffness performance which is obtained through 

eigenscrew decomposition. Patterson and Lipkin described special cases in which compliant axes exist. The application of 

translational and rotational deformations coincident with a compliant axis leads to the decoupled rotational and transla- 

tional behavior as investigated in [43] . Huang and Schimmels [44] decomposed the spatial stiffness matrix and introduced 

stiffness-coupling index using eigenscrew decomposition which can lead to a physical appreciation of compliance/stiffness 
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