Accepted Manuscript

Production feasibility and performance of carbon fibre reinforced glulam beams manufactured with polyurethane adhesive

Michele Brunetti, Ioannis P. Christovasilis, Michelangelo Micheloni, Michela Nocetti, Benedetto Pizzo

PII: S1359-8368(18)31639-1

DOI: 10.1016/j.compositesb.2018.08.075

Reference: JCOMB 5905

To appear in: Composites Part B

Received Date: 22 May 2018
Revised Date: 25 July 2018
Accepted Date: 20 August 2018

Please cite this article as: Brunetti M, Christovasilis IP, Micheloni M, Nocetti M, Pizzo B, Production feasibility and performance of carbon fibre reinforced glulam beams manufactured with polyurethane adhesive, *Composites Part B* (2018), doi: 10.1016/j.compositesb.2018.08.075.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Production feasibility and performance of carbon fibre reinforced glulam beams manufactured
2	with polyurethane adhesive
3	• •
4	Michele BRUNETTI ^a , Ioannis P. CHRISTOVASILIS ^b , Michelangelo MICHELONI ^c , Michela
5	NOCETTI ^{a,*} , Benedetto PIZZO ^a
6	
7	^a CNR-IVALSA, via Madonna del Piano 10, I-50019 Sesto Fiorentino (FI), Italy
8	^b Aether Engineering s.a.s., Via Quintino Sella 6/A, 50136 Florence, Italy
9	^c Studio Micheloni s.r.l., Via Antonio Gramsci 20, 50055 Lastra a Signa, Florence, Italy
10	
11	*Corresponding author
12	Michela Nocetti
13	CNR – IVALSA, Istituto per la Valorizzazione del Legno e delle Specie Arboree
14	Via Madonna del Piano 10, I - 50019 Sesto Fiorentino (FI), Italy
15	e-mail: nocetti@ivalsa.cnr.it
16	Tel: 0039-055-5225754
17	Fax: 0039-055-5225643
18	
19	Abstract
20	Wood is a structural material traditional and modern at the same time. It can be used as solid timber or
21	combined with adhesives to form engineered wood products with enhanced mechanical properties,
22	opening several opportunities for the development of the wood building sector in the construction
23	industry. Here, the feasibility of producing glulam beams reinforced with carbon fabric applied using
24	mono-component polyurethane glue was analysed. The same adhesive was utilized during beam
25	manufacturing; thus, carbon-reinforced elements were produced with a unique assembling procedure.
26	Unreinforced glulam beams were compared with strengthened elements; the factors analysed were the
27	thickness of the carbon fabric and the adhesive type used at the fabric-timber interface, comparing the
28	polyurethane adhesive with an epoxy resin. Both bending tests and numerical modelling have been
29	performed in the study. Tests showed that the general performance of the strengthened elements with

Download English Version:

https://daneshyari.com/en/article/10134022

Download Persian Version:

https://daneshyari.com/article/10134022

<u>Daneshyari.com</u>