Accepted Manuscript

Transition from n- to p-type conduction concomitant with enhancement of figure-of-merit in Pb doped bismuth telluride: Material to device development

Anil K. Bohra, Ranu Bhatt, Ajay Singh, Shovit Bhattacharya, Ranita Basu, K.N. Meshram, Shaibal K. Sarkar, Pramod Bhatt, P.K. Patro, D.K. Aswal, K.P. Muthe, S.C. Gadkari

PII: S0264-1275(18)30650-6

DOI: doi:10.1016/j.matdes.2018.08.035

Reference: JMADE 7333

To appear in: Materials & Design

Received date: 1 June 2018
Revised date: 13 August 2018
Accepted date: 19 August 2018

Please cite this article as: Anil K. Bohra, Ranu Bhatt, Ajay Singh, Shovit Bhattacharya, Ranita Basu, K.N. Meshram, Shaibal K. Sarkar, Pramod Bhatt, P.K. Patro, D.K. Aswal, K.P. Muthe, S.C. Gadkari, Transition from n- to p-type conduction concomitant with enhancement of figure-of-merit in Pb doped bismuth telluride: Material to device development. Jmade (2018), doi:10.1016/j.matdes.2018.08.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Transition from n- to p-type conduction concomitant with enhancement of figure-of-merit in Pb doped bismuth telluride: material to device development

Anil K. Bohra¹, Ranu Bhatt¹, Ajay Singh^{1*}, Shovit Bhattacharya¹, Ranita Basu¹, K. N. Meshram¹, Shaibal K. Sarkar⁴, Pramod Bhatt², P. K. Patro⁵, D. K. Aswal^{1, 3}, K. P. Muthe¹, S. C. Gadkari¹

¹Technical Physics Division, Bhabha Atomic Research Center, Mumbai-400085, India

²Solid State Physics Division, Bhabha Atomic Research Center, Mumbai-400085, India

³National Physical Laboratory, New Delhi -110011, India

⁴Dept. of Energy Science and Engineering, IIT Bombay, Powai, Mumbai-400076, India

⁵Powder Metallurgy Division, Bhabha Atomic Research Center, Mumbai-400085, India

*Corresponding author email: ajay@barc.gov.in (Ajay Singh)

Abstract

The majority of industrial, automobile processes, electrical appliances emit waste heat in the low-temperature range (< 573 K), hence efficient thermoelectric materials operating in this range are highly needed. Bismuth telluride (Bi₂Te₃) based alloys are conventional thermoelectric material for the low-temperature application. The pure Bi₂Te₃ sample synthesized in this work exhibits n-type conduction. We demonstrate that by small doping of Pb at Bi site a transition in electrical transport form n- to p-type is observed. The figure-of-merit (ZT) of n-type Bi₂Te₃ is \sim 0.47 and optimized Bi_{1.95}Pb_{0.05}Te₃ exhibit p-type conduction with enhanced ZT of \sim 0.63 at 386 K. The conversion efficiency of Bi_{1.95}Pb_{0.05}Te₃ based single thermoelement with hot pressed Ni/Ag electrical contacts was found to be \sim 4.9% for a temperature difference (ΔT) of 200 K. The efficiency was further enhanced to \sim 12% (at $\Delta T \sim$ 494K) in the segmented thermoelement consisting of Bi_{1.95}Pb_{0.05}Te₃ and (AgSbTe₂)_{0.15}(GeTe) _{0.85} (i.e. TAGS-85).

Download English Version:

https://daneshyari.com/en/article/10134070

Download Persian Version:

https://daneshyari.com/article/10134070

<u>Daneshyari.com</u>