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A B S T R A C T

This study aims to identify numerical analysis methods for the reliability prediction of rotating
mirror(RM) strength at the early-stage design. A mathematical model for the strength reliability
analysis of RM is established based on the Monte Carlo method, small-sample theory, and re-
liability principle. Numerical analysis on the strength reliability of RM is conducted, and the
results are experimentally verified according to small-sample theory. The spearman rank order
correlation coefficients between structure parameters and the maximum stress is the circumra-
dius of mirror body, and that of the material variable is the elastic modulus of high-strength
aluminum alloy(Al). The skewness and kurtosis values of maximum stress and strain are all
positive. Calculated statistical results obey normal distribution and are right skewed. At 95%
confidence level, the strength reliability of the RM with a design speed of 70,000 rpm is 0.999.
This finding shows that the strength reliability of the RM meets the required design in ideal state.
No failure of RMs occurs among strength reliability experiment, proving the validity of the nu-
merical model. This model provides an economic, feasible, and effective method for estimating
the strength reliability of RM.

1. Introduction

In the high-speed photography, RM ultra-high-speed cameras are widely used in wind-tunnel tests, high-pressure physics, mi-
cromechanics, and other scientific studies with features of large format, large format numbers, high spatial resolution, wide spectral
bands, and wide shooting-frequency bands [1–6]. RM is the core component of ultra-high-speed cameras, and the strength reliability
of this component directly determines the reliability of ultra-high-speed cameras [3,7–10]. Meanwhile, RM has a large potential
application value in the field of laser processing with a scanning speed 100 times higher than that of commonly used galvanometer
mirrors [11,12]. The rotational speed of the RM of ultra-high-speed cameras ranges between 0 and 5.0× 105 rpm, and that for laser
processing is about 1.0×105 rpm. Due to the high rotational speed, the required mechanical properties of its materials are relatively
high and are hardly met by traditional design methods. Current research on RM mainly focuses on dynamic characteristics, RM
surface deformation, and RM strength [2,7,10,13–15]. Considering the complicated internal stress and strain of RMs, predicting their
strength reliability at the early-stage design of such mirrors is difficult.

In this letter, the performance functions of RMs are taken as research objects to establish a mathematical model for the strength
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reliability analysis of RMs according to the probability density distribution function of basic variables, such as the structure sizes.
Numerical analysis on the strength reliability of the RM is conducted at the rotational speed of 70,000 rpm, and results are ex-
perimentally verified according to small-sample theory. The performance function values of the RM are found to be far below
allowance value. The spearman rank order correlation coefficients between circumradius of mirror body (R1), radius of shaft segment
1 (R2) and maximum stress of the RM are 0.406 and 0.304, respectively. R1 is the parameter that has the greatest influence on the
maximum stress in the structure sizes of RM. And that of the materials’ is the elastic modulus of Al. The skewness and kurtosis values
of the maximum stress and strain probability distribution curves are all positive. The strength reliability of the RM meets design
requirements. No failure is observed among the 10 RM samples in the reliability tests. These findings indicate that the validity of the
RM strength reliability model and provides theoretical basis for the design of RM.

2. Theoretical basis

According to strength reliability theory, the stress and strength of the RM obey normal distribution. The probability density
distribution functions [16–20] are
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in the formula, σS, σδ , and μS, μδ are the standard deviation and mean value of the stress S and strength δ, f S( ) is the stress probability
density function, and g δ( ) is the strength probability density distribution function.

The strength reliability [21,22] of the RM is
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in the formula, = −y δ S is the strength reliability performance function of the RM. Formula (3) shows that the strength reliability of
the RM is a multidimensional issue with a complicated domain of integration, and no analytical solution exists for the integral
formula of the performance function. Thus, a numerical method must be introduced to solve the issue of the RM strength reliability.
The parameters of the RM’s stress, strength, elastic modulus, density, and structure size are the random basic variables of the strength
reliability analysis, which meet certain mathematical statistic laws. The law of large numbers states that when a sample is large, the
statistical law of the parent can be replaced by the sample. Thus, sample values can be drawn within the probability density dis-
tribution function of the basic variable of the RM. Each sample value can be substituted into the reliability probability formula to
calculate the reliability of the sample value and finally obtain the reliability of the RM through statistical analysis. With a sufficiently
large sample value, which is extracted within the range of the probability density distribution function of the RM, the strength
reliability of the statistically obtained sample is infinity approximation to that of RM.

In this letter, we used the Monte Carlo method [23,24] for solving the strength reliability of RM. First, a probability analysis
model for the strength reliability of the RM is established according to the probability density distribution function of the basic
variables of the RM. Then, the percentage of the maximum stress of the RM under a certain value is statistically analyzed through
multiple random samplings. With sufficient samples, the percentage approximates the strength reliability of the RM. We initially
suppose that N random samples of the basic variable = ⋯x j N( 1, 2, )j are produced by the probability density distribution function
f x( )X ii of the basic random variable of the RM, and that these N random samples are substituted into the performance function y.
Sample numbers Nf falling into the failure domain = ≤F x g x{ : ( ) 0} are then calculated, and the failure probability Pf is approxi-
mately replaced by the frequency of the failure N Nf . Thus, approximate values P̂f of the failure probability of the RM are ap-
proximated. The expectation of the estimated value of the failure probability P̂f is [22,25]
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Given that sample xj and the parent x of the RM are independent and identically distributed random variables [21,22,26], then
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where P̂f is an unbiased estimator of Pf .
Due to the independent and identically distributed of the samples, the variance of the failure probability estimated value P̂f is
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