Accepted Manuscript

Nonlinear absorption and refraction studies of truncated CuNb₃O₈ with high-repetition rate femtosecond pulses

N. Priyadarshani, T.C. Sabari Girisun, S. Venugopal Rao

PII: S0254-0584(18)30764-8

DOI: 10.1016/j.matchemphys.2018.09.013

Reference: MAC 20942

To appear in: Materials Chemistry and Physics

Received Date: 6 May 2018
Revised Date: 31 July 2018

Accepted Date: 2 September 2018

Please cite this article as: N. Priyadarshani, T.C. Sabari Girisun, S. Venugopal Rao, Nonlinear absorption and refraction studies of truncated CuNb₃O₈ with high-repetition rate femtosecond pulses, *Materials Chemistry and Physics* (2018), doi: 10.1016/j.matchemphys.2018.09.013.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Nonlinear Absorption and Refraction Studies of Truncated

CuNb₃O₈ with High-repetition Rate Femtosecond Pulses

N. Priyadarshani, T.C. Sabari Girisun^{a,*} and S. Venugopal Rao^{b,#}

^aNanophotonics Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli, India.

^bAdvanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, Telangana, India.

* Corresponding Author: sabari.girisun@gmail.com #e-mail: soma venu@uohyd.ac.in

Abstract

Copper niobate with CuNb₃O₈ composition was prepared via one-step solid state reaction (750 °C, 12 hours). Powder X-ray diffraction (XRD) confirmed the formation of parental CuNb₂O₆ phase with traces of CuNb₃O₈ on initial sintering (till 9 hours), which was then transformed into pure CuNb₃O₈ on higher sintering (12 hours). Field emission scanning electron microscope studies (FESEM) illustrates the formation of truncated cubes due to unification of layered structure upon prolonged heating. Third-order nonlinear optical properties of truncated CuNb₃O₈ was studied by Z-scan technique using Ti: Sapphire laser (800 nm, 150 fs, 80 MHz). Pure CuNb₃O₈ possessed strong nonlinear absorption (two-photon absorption coefficient of 5.3×10^{-10} m/W) and nonlinear refractive index n_2 (2.1×10^{-16} m²/W) compared to mixed copper niobate (CuNb₂O₆ - CuNb₃O₈). The third-order nonlinear optical susceptibility of CuNb₃O₈ was ~10⁻¹¹ esu and was higher than the known nonlinear optical (NLO) systems such as lithium niobate and sodium niobate measured at similar pulse duration. Enhancement in nonlinearity arises due to the influence of morphology and here truncated cubes with the platonic solids offer high polarizability as the charges are concentrated in the edges of the system. The truncated cube CuNb₃O₈ exhibited strong optical limiting action with a low limiting threshold (34.6 µJ/cm²), thus making it appealing for ultrafast optical limiter devices towards photosensitive component protection from Infrared (IR) laser damage.

Keywords: Copper Niobate, Femtosecond, Z-scan, Two-photon Absorption

Download English Version:

https://daneshyari.com/en/article/10135584

Download Persian Version:

https://daneshyari.com/article/10135584

<u>Daneshyari.com</u>