
Optics Communications 430 (2019) 364–373

Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier.com/locate/optcom

Propagation properties of chirped Airy hollow Gaussian wave packets in a
harmonic potential
Shijie Chen, Guang Lin, Jintao Xie, Youwei Zhan, Shudan Ma, Dongmei Deng *
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China

A R T I C L E I N F O

Keywords:
Mathematical model in optics
Chirp
Wave propagation

A B S T R A C T

Based on the analytical expression obtained by solving the (3+1) D Schrödinger-like equation, the spatiotemporal
propagation properties of the chirped Airy hollow Gaussian (CAiHG) wave packets in harmonic potential are
described and discussed in detail. Results show that the folds on the isosurfaces of the CAiHG wave packets
deepen with the temporal chirp parameter 𝛽 increasing. The wave rings of the CAiHG wave packets can be
eliminated as the distribution factor increases, which lead to the stretch of the intensity distribution along the 𝑇
axis. Moreover, in HGB-like condition, with the increase of the potential width parameter, the Poynting vector and
the angular momentum increase and distribute more evenly while their distributions gradually become hollow
as the propagation distance increases. Besides, the quantity of the main peaks of the gradient force is exactly
proportional to the potential width parameter. As the beam orders increase, the secondary peaks gradually
increase while the main peaks are opposite. When 𝛽 ≤ 0, the gradient force rapidly decreases while the gradient
force decreases first and then increases when 𝛽 > 0.

1. Introduction

Solving the Schrödinger equation, the nonspreading Airy beams
were theoretically derived by Berry and Balazs [1]. In 2007, the Airy
beams with finite energy, which can be achieved by using a decay
factor in the theory, were experimentally confirmed and reported [2].
Since then, the propagation properties of the Airy beams, such as
self-healing [3], self-acceleration [4–6], and weak diffraction [7] have
been concretely studied, which has led to the great applications of
Airy beams on micromanipulation [8,9], laser filamentization [10],
curved plasma channel generation [11] and so on. In addition, the Airy
beams with a chirp parameter exhibit intriguing propagation properties
when propagating through different media, such as a gradient-index
medium [12], strongly nonlocal medium [13], chiral medium [14] and
uniaxial crystal [15], which have aroused intense interest among optical
researchers.

On the other hand, special optical beams named dark-hollow beams
(DHBs) whose central intensity is zero, have attracted extensive at-
tention because of their prominent application in applied optics and
atomic optics [16–18]. Besides, the DHBs can be obtained from various
generation techniques, such as optical holography [19,20], the hollow-
fiber technique [21] and the anisotropic nonlinear optical method [22].
Recently, new mathematical models of beam called the hollow Gaussian
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beams (HGB) have described DHBs better [23]. The unusual propagation
properties of HGB have attracted many optical researchers to join
the HGB research field. For example, in the far field, the intensity
distribution and M2 factor of HGB were discussed in depth by Deng et al.
in 2005 [24]. Soon, the analytical vector structure of HGB was exactly
analyzed and described in detail [25,26]. In order to apply HGB in
more specific fields, the propagation properties of HGB in the Rayleigh
scattering regime [27], uniaxial crystals [28] and strongly nonlocal
nonlinear media [29] were investigated. However, when the HGB is
combined with the chirped Airy distribution, the new wave packets—
chirped Airy hollow Gaussian (CAiHG) wave packets propagating in a
harmonic potential may show many extraordinary properties due to the
influence of the temporal chirp parameter and the specificity of the
harmonic potential. According to the current resources available, this
study has not been reported. We will explore this study in the following
paper.

In the second section of this paper, the light field expression for
the CAiHG wave packets propagating in the presence of a harmonic
potential is deduced by solving the normalized dimensionless linear
(3+1) D Schrödinger-like equation. In the third section, considering the
temporal domain and the spatial domain, the propagation properties
of the CAiHG wave packets in a harmonic potential are analyzed and
described in detail. Finally, we summarize the entire paper in the fourth
section.
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2. Model and analytical solution

In a harmonic potential, the beams specifically obey the equation
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index in the case of anomalous dispersion. The above equation can be
expressed in dimensionless form by introducing the new coordinates
𝑋 = 𝑥∕𝑤0, 𝑌 = 𝑦∕𝑤0 and 𝑍 = 𝑧∕𝐿𝑑𝑖𝑓 , where 𝐿𝑑𝑖𝑓 = 𝑘0𝑤0

2 is the
diffraction length. 𝑤0 and 𝑘0 = 2𝜋∕𝜆0 denote the beam waist width and
the wave number, respectively. Furthermore, the following change must

be made: 𝑇 = 𝜏
𝜏0

√
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. Here, 𝐿𝑑𝑖𝑠𝑝 = 𝜏02∕𝛽2 is the dispersion length.
One, then, obtains the dimensionless equation
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where 𝑈 (𝑋, 𝑌 , 𝑇 ,𝑍) describes the amplitude distribution of the light
field.

In order to derive the analytical expression of CAiHG wave packets
propagating in a harmonic potential, the influences of diffraction and
dispersion can be equalized for simpler analysis. In the harmonic
potential, the paraxial CAiHG wave packets obey the normalized di-
mensionless linear (3+1) D Schrödinger-like equation [30]:
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where 𝛼1 stands for the potential width parameter.
Using the method of separation of variables, the solution to Eq. (1)

can be defined as the following form:
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Substituting Eq. (2) into Eq.(1), we can have the following equations:
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The initial distribution at Z = 0 of the solution of Eq. (3) is described
as 𝐴 (𝑇 , 0) = 𝐴𝑖(𝑇 )𝑒𝑎𝑇 𝑒(𝑖𝛽−1)(𝑇 2∕𝛼22), where Ai(.) represents the Airy
function and 𝑎(0 < 𝑎 ≤ 1) indicates the decay factor in 𝑇 direction,
𝛼2 denotes a dimensionless distribution factor, and 𝛽 is the temporal
chirp parameter. When we solve Eq. (3) using the Fourier transform
and inverse Fourier transform method, the analytical equation can be
expressed as:
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where 𝑏 = 2𝑖𝑍 − 1∕(𝑖𝛽 − 1). 𝑐 = − 1
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and 𝑑 = 𝑖𝛽 − 1.
The solution to Eq. (4) in Fourier optics can be expressed as [31]:
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, 𝑄 = 𝛼1 cot(𝛼1𝑍)∕2, and 𝐾 =
𝛼1∕ sin(𝛼1𝑍). It is not difficult to find that with 𝐾𝑋 and 𝐾𝑌 standing for
the spatial frequencies, Eq. (4) can be shown as the 2D Fourier transform
of 𝜙 (𝜉, 𝜂, 0) exp
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.
The normalized paraxial HGB at 𝑍 = 0 can be considered as the

initial spatial solution to Eq. (4), which is expressed as:
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Here, 𝑛 = 0, 1, 2,… represents the order of the paraxial HGB and 𝐶0 is
a constant. By applying the Fourier transform to Eq. (7), the Fourier
expression of the initial HGB is:
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denotes a binomial coefficient.
Substituting Eq. (8) into Eq. (6), we can obtain the analytical solution

to Eq. (4), which satisfies the following expression:
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Here, 𝐿𝑚(.) indicates the Laguerre polynomial with 𝑚th-order.
Combined Eq. (5) with Eq. (9), the exact solution to Eq. (2) can be

described as:
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Eq. (10) describes the CAiHG wave packets propagating in the
harmonic potential. Based on Eq. (10), we will analyze their propagation
properties in the next section.

3. Numerical analysis and discussion

According to the analytical solutions derived in the previous section,
the propagation properties of the second- (𝑛 = 2), third- (𝑛 = 3) and
fourth-order (𝑛 = 4) CAiHG wave packets in the harmonic potential are
explored in detail and discussed concretely in the following.

3.1. The CAiHG wave packets in harmonic potential and in temporal domain

Controlling different temporal chirp parameters 𝛽, Fig. 1 shows
snapshots describing the shape of the CAiHG wave packets in a harmonic
potential, the sectional views of the intensity distribution and the graph
of the maximum intensity distribution along the 𝑇 axis. Because the
maximum intensity distribution along the 𝑇 axis with different orders
is similar, we only analyze the second-order CAiHG wave packets as
shown in Fig. 1(c1)–(c2) for convenience. From Fig. 1(a1)–(a3), (a4)–
(a6) and (a7)–(a9), it is not difficult to see that with the temporal chirp
parameter 𝛽 increasing, the folds on the isosurfaces of the second-,
third- and fourth-order CAiHG wave packets in a harmonic potential are
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