
Author's Accepted Manuscript

Fully Printed 3D Cube-Shaped Multiband Fractal Rectenna for Ambient RF Energy Harvesting

Azamat Bakytbekov, Thang Q. Nguyen, Cuong Huynh, Khaled N. Salama, Atif Shamim

www.elsevier.com/locate/nanoenergy

PII: S2211-2855(18)30666-9

DOI: https://doi.org/10.1016/j.nanoen.2018.09.022

Reference: NANOEN3027

To appear in: Nano Energy

Received date: 3 August 2018 Revised date: 5 September 2018 Accepted date: 10 September 2018

Cite this article as: Azamat Bakytbekov, Thang Q. Nguyen, Cuong Huynh, Khaled N. Salama and Atif Shamim, Fully Printed 3D Cube-Shaped Multiband Fractal Rectenna for Ambient RF Energy Harvesting, *Nano Energy*, https://doi.org/10.1016/j.nanoen.2018.09.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fully Printed 3D Cube-Shaped Multiband Fractal Rectenna for Ambient RF Energy Harvesting

Azamat Bakytbekov^{a,*}, Thang Q Nguyen^a, Cuong Huynh^b, Khaled N Salama^a, Atif Shamim^a Computer, Electrical and Mathematical Science and Engineering Department, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia ^bTelecommunication Engineering Department, Ho Chi Minh University of Technology, Ho Chi Minh City 70000, Vietnam

*Corresponding author. Address: King Abdullah University of Science and Technology, Bldg. 3, seaside, fl. 2, 2247-WS07, Thuwal 23955, Saudi Arabia. E-mail:

Azamat.bakytbekov@kaust.edu.sa

Abstract

The Internet of Things (IoT) is an emerging paradigm that requires billions of wirelessly connected devices in a complex radio-frequency (RF) environment. With such a huge number of devices in this scenario, recharging or replacing batteries becomes impractical. Therefore, powering IoT devices by harvesting energy from ambient sources, such as that available in the RF spectrum, is an attractive solution. The antenna for the RF energy harvester must work on multiple bands to capture as much power as possible. This paper presents a fully printed 3D cube triple band Cantor fractal rectenna based on the system-on-package (SoP) concept; the antenna is realized on the package that houses a rectifier circuit and a multiband matching network. The combination of additive manufacturing and SoP ensures a lower cost and the efficient use of available space. The rectenna harvests RF power from GSM900, GSM1800, and 3G 2.1 GHz frequency bands. Field tests of the RF energy harvester conducted in a real ambient environment confirm that up to 200 mV output voltage can be harvested. Also, 550 mV is harvested when the rectenna is near a smartphone during a live phone call. The promising results and lower cost make this design a suitable candidate to power IoT devices.

Graphical abstract

Download English Version:

https://daneshyari.com/en/article/10135935

Download Persian Version:

 $\underline{https://daneshyari.com/article/10135935}$

Daneshyari.com